
Page | 1

Using a Scalable Parallel 2D FFT for Image Enhancement

Yaniv Sapir Adapteva, Inc.

Email: yaniv@adapteva.com

Introduction

Frequency domain operations on spatial or time data are often used as a means for accelerating

calculations. For example, when filtering a signal, one can use convolution to perform the operation in

the spatial domain or transform the signal to frequency domain and apply a window function to achieve

the same effect.

The problem with the first approach is that for large kernels, the convolution complexity approaches

O(N2). When using a smart transform algorithm like the Radix-2 Fast Fourier Transform (FFT), the

complexity is reduced to O(N∙lg2N). For a large N this can become a significant difference.

Another reason for performing an operation in the frequency domain is that designing the filter may be

easier and more intuitive (as a very simplistic example, a simple low-pass filter is merely a nulling of the

high order frequency components of the signal).

In this paper we will present the demonstration of a simple image enhancement program. This

operation is performed in frequency domain by first applying 2D FFT to an image, then apply a low-pass

filter and convert back to special domain by a 2D IFFT operation:

Fig 1: Image Enhancement pipeline

Fourier Transform

The standard algorithm for transforming data from spatial to frequency domain is the Fourier

Transform. When dealing discrete data (like sampled digital data), then we use the Discrete Fourier

Transform (DFT):

(1) ∑

 k = 0 ⋯ N-1

The inverse transform (IDFT) is defined as:

(2)

 ∑

 n = 0 ⋯ N-1

2D FFT 2D IFFT
Low-pass

Filter

Page | 2

This formula involves O(N2) operations. Fortunately, a faster algorithm was invented, called Fast Fourier

Transform (FFT) that performs the calculation in O(N∙lg2N), or better, operations. It takes advantage of

recurring terms in the DFT and avoids the re-calculations.

A two dimensional transform is performed in two steps - first transform each row using a regular FFT,

then transform each column with a regular FFT. With some computer architecture it is more efficient to

work on rows than on columns, so instead of the above method, one can transpose the array (an

operation a.k.a corner-turn) and perform the 2nd pass on rows as well, then transpose back to the

original orientation.

Two flavors of the algorithm exist - Decimation in Time (DIT) and Decimation in Frequency (DIF). These

are basically the same calculations in a different order, so the choice among the two is merely a matter

of preference. Nevertheless, they both involve two separate operations - the lg2N stages of FFT

butterflies and the array reordering according to bit-reversed addressing.

There are plenty of sources describing the FFT algorithm available for further reading. For this work, we

implemented the Radix-2 FFT variant.

Implementation

We implemented the Image Enhancement program on a 16-cores E16G3 Epiphany processor on an

EMEK3 system in a host-accelerator model. The cores have 32KB of per-core SRAM. It can also

transparently access all of the on-chip memory and off-chip DRAM. For this problem we decided to

implement the program in a data-flow accelerator style. Here, the Epiphany acts like an image

processing chip in a system with no accessible DRAM. This means that all image data and twiddle factors

have to be stored locally on the per-core memory. For simplicity, we used floating point data.

Forward 2D Transform

When arranging the data arrays on the on-chip memory, there are a few possible schemes. Probably the

most obvious is to divide the image to square tiles, each of size ¼ of the total height and width, and

locate each tile on a core, as seen in Fig.2. We can then perform FFT on image rows and then on

columns, but we need to do it in a multicore fashion, spread over 4 cores. Examining the DFT equation

(and the FFT algorithm), we can see that every frequency component involves data from all the spatial

domain samples. This means that we need to swap data between the four cores in order to complete

the full FFT calculation.

Alternatively, we arranged the 16 cores in a column, as seen in Fig.3, such that each core handles full

image rows:

Page | 3

Fig 2: Matrix tiling topology of the memory

Fig 3: Column tiling topology of the memory

Arranging the cores in this way requires us to transpose the image data after the row-wise

transformation, such that the columns become rows and we can perform the column-wise transform

using a single core program. Then, we transpose it again to have the columns back in place.

Low Pass Filter

For the lowpass filter we used the ideal step-shaped window function, eliminating the high frequency

domain coefficients, which are located around the center lines of the transformed image (which

correspond to the Nyquist frequency). The filter coefficients can be seen in Fig.4:

0 (0,0) 1 (0,1) 2 (0,2) 3 (0,3)

4 (1,0) 5 (1,1) 6 (1,2) 7 (1,3)

8 (2,0) 9 (2,1) 10 (2,2) 11 (2,3)

12 (3,0) 13 (3,1) 14 (3,2) 15 (3,3)

0
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

Page | 4

1 0 0 1

 0 0 0 0

0 0 0 0

1 0 0 1

Fig 4: 2D Low Pass filter coefficients

So, for every non-zero mask, we leave the frequency component unchanged. For every zero mask we

replace the component with 0.

Inverse Transform

Examining the IFFT equation, we see that each sample is normalized by 1/N. This is required in order to

satisfy the condition that)). Furthermore, the twiddle factors of the IFFT are the

complex conjugates of the FFT. In order to reuse the same function for FFT and IFFT, we perform the

1/N normalization in the filter function. We also extend the twiddle factors look-up table to include the

conjugates.

Memory Arrangement

The E16G3’s per-core memory is comprised of four 8KB banks, totaling 32KB. Reading and writing

from/to different banks can be performed with no penalty. For our implementation, involving corner-

turn operations, we need to allocate two buffers for the concurrent swap of data between the cores.

The final layout is as follows:

Fig 5: Per-core memory arrangement

Per-Core SRAM 32KB

Bank 1

Ping Buf

8KB

Bank 2

Pong Buf

8KB

Bank 3 Lo

Twiddle

Factors

4KB

Bank 3 Hi

Mailbox

Control

Stack

Bank 0

Program Code

8KB

Page | 5

The amount of available memory can contain an input array of up to 128128 complex elements. For

this program, we use complex type to store the pixel data. We assume that any required type

conversion is done outside the FFT accelerator. Given 16 cores, each core stores 8 rows of 128 pixels.

Scalability

The program was implemented in a scalable fashion. The distribution of work across the cores is even.

This implies that the time required to complete the calculation is roughly inversely proportional to the

number of cores. Thus, a 64-core chip like E64G4 will complete the task in about ¼ of the time.

Increasing the chip size also adds memory and thus enables the increase of the frame size. Considering

the chosen memory allocation scheme, it can be seen that maximum size of the frame that can be

processed is:

(3) √

Where:

 - Witdh and Height of frame

 - Number of cores in chip

 - Size of a memory bank in bytes

 - Size in bytes of complex-float type (= 8)

For the E16G3 this means a maximum frame of 128128. For the E64G4 the calculation gives 256256.

The E64G4 will process a 256256 frame at the same time as the E16G3 processes a 128128 frame.

In order to process a 1,0241,024 frame, we would thus need 1,024 cores (with 8KB per memory bank).

This means a chip size of 3232 cores. The Epiphany architecture enables a virtually zero effort in

arranging a cluster of chips on a single board. In this case, the chips form a glueless epiphany mesh,

which means that existing code need not change when scaling the available hardware. Thus, one can

arrange an array of 88 E16G3 chips or 44 E64G4 chips to form a 1,0241,024 2D FFT engine.

Results and Analysis

The program was implemented in C and tested on the EMEK3 platform. The EMEK3 kit is based on the

E16G3 Epiphany chip which has 16-cores. The chip clock frequency is set to 400MHz but may be

increased to 1GHz. We tested a sample 128128 image, to which we added some high frequency noise.

The noisy image and the filtered out result can be seen below:

Page | 6

 Noisy image Filtered image

Measurements of the performance show that 2D FFT operation requires 0.73 msec = 294 Kcycles to

complete. Of which, about 89% go to the butterfly stages, 6.5% are consumed by the bit-reverse

reordering and the rest is spent on the two corner-turns. The whole image processing operation takes

about 1.5 msec. This includes 2D FFT, low-pass filter and 2D IFFT.

Stage Cycles [x1000] %

butterflies 264 89.5

reordering 19 6.5

corner-turn 13 4.2

Total (*) 294 100
(*) note that the total count does not equal the simple sum of the components b/c some operations

are performed in parallel across multiple cores.

A more aggressively optimized, Radix-4 FFT code was implemented in another context and shows that

an improvement of up to 2X to the above measurement is feasible.

Conclusions

In this paper we presented a sample frequency domain image enhancement application using 2D FFT

operation. This implementation does not use DRAM for storing data and is limited by the amount of on-

chip memory. We chose the cores arrangement topology so that no parallel 1D FFT implementation was

required. Thus, we simplified the implementation.

The implementation is easily scalable and the performance is inversely proportional to the chip size.

Performance measurements show that the Epiphany’s Netwok-on-Chip (NOC) is extremely efficient in

transferring data among the cores, and that the corner-turn operation consumes a small fraction of the

total calculation time.

The timing shows that using the 16-cores Epiphany, scaled to max frequency, it is possible to process

thousands of frames per second.

Page | 7

References

[1] The program’s code, in the form of an Eclipse project “fft2d” is available for download from the

Adapteva website at http://www.adapteva.com/support/examples/

http://www.adapteva.com/support/examples/

