

Epiphany SDK Reference

2 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Copyright © 2008-2013 Adapteva Inc.

All rights reserved.

Adapteva, the Adapteva Logo, Epiphany
™

, eSDK
™

 eCore
™

, eMesh
™

, eLink
™

,eHost
™

,eHal
™

,

and eLib
™

 are trademarks of Adapteva Inc. All other products or services mentioned herein may

be trademarks of their respective owners.

The product described in this document is subject to continuous developments and

improvements. All particulars of the product and its use contained in this document are given by

Adapteva Inc. in good faith. For brevity purposes, Adapteva is used in place of Adapteva Inc. in

below statements.

1. Subject to the provisions set out below, Adapteva hereby grants to you a perpetual, non-

exclusive, nontransferable, royalty free, worldwide license to use this Reference Manual for the

purposes of developing; (i) software applications or operating systems which are targeted to run

on microprocessor chips and/or cores distributed under license from Adapteva; (ii) tools which

are designed to develop software programs which are targeted to run on microprocessor cores

distributed under license from Adapteva; (iii) or having developed integrated circuits which

incorporate a microprocessor core manufactured under license from Adapteva.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the Reference

Manual, or any Intellectual Property therein. In no event shall the licenses granted in Clause 1,

be construed as granting you expressly or by implication, estoppel or otherwise, licenses to any

Adapteva technology other than the Reference Manual. The license grant in Clause 1 expressly

excludes any rights for you to use or take into use any Adapteva patents. No right is granted to

you under the provisions of Clause 1 to; (i) use the Reference Manual for the purposes of

developing or having developed microprocessor cores or models thereof which are compatible in

whole or part with either or both the instructions or programmer's models described in this

Reference Manual; or (ii) develop or have developed models of any microprocessor cores

designed by or for Adapteva; or (iii) distribute in whole or in part this Reference Manual to third

parties, other than to your subcontractors for the purposes of having developed products in

accordance with the license grant in Clause 1 without the express written permission of

Adapteva; or (iv) translate or have translated this Reference Manual into any other languages.

3.THE “REFERENCE MANUAL” IS PROVIDED "AS IS" WITH NO WARRANTIES

EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY

WARRANTY OF SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A

PARTICULAR PURPOSE.

4. No license, express, implied or otherwise, is granted to LICENSEE, under the provisions of

Clause 1, to use the Adapteva trade name, in connection with the use of the Reference Manual;

or any products based thereon. Nothing in Clause 1 shall be construed as authority for you to

make any representations on behalf of Adapteva in respect of the Reference Manual or any

products based thereon.

Adapteva Inc.

1666 Massachusetts Ave, Suite 14

Lexington, MA 02420

USA

3 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table of Contents
1. Introduction ..10

1.1 SDK Overview ..10

1.2 Epiphany Memory Model ..11

1.3 Epiphany Programming Framework ..12

1.4 Epiphany SDK Directory Structure ..13

1.5 ESDK Installation ..14

1.6 Additional Documentation and Resources ..15

2. Epiphany Multicore Development IDE (ECLIPSE) ..16

2.1 Overview ...17

2.2 Epiphany IDE tutorial ..18

2.3 Online Eclipse Help for Common Tasks ..27

2.4 Updating the Eclipse Installation ...28

3. C/C++ Compiler (E-GCC) ..30

3.1 Overview ...30

3.2 Simple Example ..30

3.3 Compiler Command-line Options ..31

3.4 GNU Function Attributes ...37

3.5 Epiphany Specific Compiler Attributes ..37

4. Assembler (E-AS) ..38

4.1 Overview ...38

4.2 Simple Example ..38

4.3 Command Line Options ..38

4.4 General Syntax ...38

4.5 Assembler Syntax Reference ..41

5. Linker (E-LD) ...45

5.1 Overview ...45

5.2 Simple Examples ..45

5.3 Command Line Options ..46

5.4 Linker Script Overview ..47

5.5 Explicit Code and Data Memory Management ..48

5.6 Memory Management Examples ...50

6. ELF Utilities ..51

6.1 Overview ...51

6.2 Utility Summary ...51

7. Instruction Set Simulator (E-RUN) ...52

7.1 Overview ...52

7.2 Simple Example ..52

4 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

7.3 Command Line Options ..52

8. Hardware Connection Server (E-SERVER) ..53

8.1 Overview ...53

8.2 Simple Example ..54

8.3 Command Line Options ..54

8.4 Target Server Connection API ..55

9. Debugger (E-GDB) ..56

9.1 Overview ...56

9.2 Simple Examples ..57

9.3 Command Line Options ..59

9.4 Quitting GDB ...59

9.5 Shell I/O ..60

9.6 Getting Help ..60

9.7 Command Syntax ...60

9.8 Command Summary ...61

9.9 Epiphany GDB Limitations ..64

10. Epiphany SDK Utilities (E-UTILS) ...65

10.1 Overview ...65

10.2 Reset Utility (E-RESET) ..65

10.2.1 Example ...65

10.3 Loader Utility (E-LOADER) ...65

10.3.1 Command Line Options ...66

10.3.2 Example ...66

10.4 Memory Read Utility (E-READ) ...67

10.4.1 Command Line Options ...67

10.4.2 Example ...68

10.5 Memory Write Utility (E-WRITE) ..68

10.5.1 Command Line Options ...68

10.5.2 Example ...69

10.6 Hardware Revision Utility (E-HW-REV) ...69

10.6.1 Example ...69

11. Standard Library Support ...70

11.1 Overview ...70

11.2 Standard C Libraries ...70

11.3 Standard Math Library (math.h) ..71

12. Epiphany System Programming Model ...72

13. Epiphany Hardware Utility Library (eLib) ...74

13.1 Overview ...74

5 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.2 System Register Access Functions ...76

13.2.1 Overview ..76

13.2.2 e_reg_read() ..78

13.2.3 e_reg_write()..79

13.3 Interrupt Service Functions ...80

13.3.1 Overview ..80

13.3.2 e_irq_attach()...81

13.3.3 e_irq_global_mask() ..82

13.3.4 e_irq_mask() ..83

13.3.5 e_irq_set() ...84

13.3.6 e_irq_clear() ..85

13.4 Timer Functions ..86

13.4.1 Overview ..86

13.4.2 e_ctimer_get() ..87

13.4.3 e_ctimer_set() ..88

13.4.4 e_ctimer_start() ..89

13.4.5 e_ctimer_stop() ..90

13.4.6 e_wait() ..92

13.5 DMA and Data Movement Functions...93

13.5.1 Overview ..93

13.5.2 e_read() ...95

13.5.3 e_write() ...96

13.5.4 e_dma_copy() ..97

13.5.5 e_dma_start() ..98

13.5.6 e_dma_busy() ..99

13.5.7 e_dma_wait() ... 100

13.5.8 e_dma_set _desc() .. 101

13.6 Mutex and Barrier Functions ... 102

13.6.1 Overview .. 102

13.6.2 e_mutex_init() .. 103

13.6.3 e_mutex_lock() .. 104

13.6.4 e_mutex_trylock() .. 105

13.6.5 e_mutex_unlock() .. 106

13.6.6 e_barrier_init() ... 107

13.6.7 e_barrier() .. 108

13.7 Core ID and Workgroup Functions .. 109

13.7.1 Overview .. 109

13.7.2 e_get_coreid() .. 111

6 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.3 e_get_global_address () .. 112

13.7.4 e_coreid_from_coords() ... 113

13.7.5 e_coords_from_coreid() ... 114

13.7.6 e_is_oncore() ... 115

13.7.7 e_neighbor_id() .. 116

14. Epiphany Host Library (eHAL) .. 117

14.1 Overview ... 117

14.2 Platform Configuration Functions .. 121

14.2.1 Overview .. 121

14.2.2 e_init().. 122

14.2.3 e_get_platform_info() ... 123

14.2.4 e_finalize() ... 124

14.3 Workgroup and External Memory Allocation Functions ... 125

14.3.1 Overview .. 125

14.3.2 e_open() .. 126

14.3.3 e_close() .. 127

14.3.4 e_alloc() ... 128

14.3.5 e_free() .. 129

14.4 Data Transfer Functions.. 130

14.4.1 Overview .. 130

14.4.2 e_read() ... 131

14.4.3 e_write() ... 132

14.5 System Control Functions ... 133

14.5.1 Overview .. 133

14.5.2 e_reset_system() ... 134

14.5.3 e_reset_group() ... 135

14.5.4 e_start() ... 136

14.5.5 e_start_group() .. 137

14.5.6 e_signal() ... 138

14.5.7 e_halt() .. 139

14.5.8 e_resume() .. 140

14.6 Program Load Functions ... 141

14.6.1 Overview .. 141

14.6.2 e_load() ... 142

14.6.3 e_load_group() .. 143

14.7 Utility Functions .. 144

14.7.1 Overview .. 144

14.7.2 e_get_num_from_coords() ... 145

7 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.3 e_get_coords_from_num() ... 146

14.7.4 e_is_addr_on_chip() .. 147

14.7.5 e_is_addr_on_group() .. 148

14.7.6 e_set_host_verbosity() ... 149

14.7.7 e_set_loader_verbosity() ... 150

Appendix A: Application Binary Interface (EABI) .. 151

A.1 Overview ... 151

A.2 Data Types and Alignment Restrictions .. 152

A.2.1 Arithmetic Data Types .. 152

A.2.2 Composite Types ... 153

A.3 Procedure Call Standard ... 154

A.3.1 Overview .. 154

A.3.2 Register Usage .. 154

A.3.3 Handling Large Data Types ... 155

A.3.4 Stack Management .. 155

A.3.5 Subroutine Calls .. 156

A.3.6 Procedure Result Return ... 156

A.3.7 Parameter Passing .. 157

Appendix B: Board Support Packages ... 158

B.1 Board Support Package Descriptor File ... 158

Appendix C: Changes from Previous Revisions ... 163

8 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

List of Figures

Figure ‎1.1: Epiphany SDK ...10

Figure ‎1.2: Epiphany Global Address Map ..11

Figure ‎1.3: Epiphany Program Build Flow ...12

Figure ‎1.4: Epiphany SDK Directory Structure ..13

Figure ‎2.1 The Eclipse IDE ...17

Figure ‎2.2: The Workspace Launcher ...18

Figure ‎2.3: Project Definition Selection ...19

Figure ‎2.4: Application Target Cores Allocation...20

Figure ‎2.5: C/C++ Perspective for Multicore Application ...21

Figure ‎2.6: Run Configurations Settings ..23

Figure ‎2.7: Debug Configuration Settings ..23

Figure ‎2.8: Debug Perspective ..24

Figure ‎2.9: C/C++ Perspective for Single Core Application ...26

Figure ‎2.10: Install New Software Dialog ...28

Figure ‎8.1: The eServer Client-Target Connection Concept ..53

Figure ‎12.1: Platform, Workgroup and eCore coordinates ...73

9 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

List of Tables

Table ‎3.1: General Compiler Options ..31

Table ‎3.2: Warning Options...32

Table ‎3.3: Debug Options ...32

Table ‎3.4: Linker Options ..32

Table ‎3.5: Optimization Options ..33

Table ‎3.6: Floating Point Math Options ...34

Table ‎3.7: Epiphany Unique Options ...35

Table ‎4.1: Assembler Command Line Options ..38

Table ‎4.2: Assembler Control Directives ...41

Table ‎4.3: Assembler Symbol Directives ...42

Table ‎4.4: Assembler Constant Directives ...42

Table ‎4.5: Assembler Looping Directives ..42

Table ‎4.6: Assembler Conditional Directives ...43

Table ‎4.7: Assembler Macro Directives ...43

Table ‎4.8: Assembler Digit Encoding ..43

Table ‎4.9: Assembler Expression Operators ...44

Table ‎5.1: Linker Command Line Options ...46

Table ‎5.2: Memory Management Linker Symbols ..48

Table ‎5.3: Memory Management Scenarios ..49

Table ‎5.4: Linker Sections ...49

Table ‎6.1 ELF Manipulation Programs ..51

Table ‎7.1: Simulator Command Line Options ..52

Table ‎8.1: eServer Command Line Options ..54

Table ‎9.1: Debugger Command Line Options ...59

Table ‎9.2: Debugger Commands ..61

Table ‎10.1: Loader Command Line Options ..66

Table ‎10.2: e-read Command Line Options ...67

Table ‎10.3: e-write Command Line Options ..68

Table ‎11.1: Key Standard C Library Components ...70

Table ‎14.1: Arithmetic Data Types .. 152

Table ‎14.2: Register Usage and Procedure Call Standard .. 154

10 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

1. Introduction

1.1 SDK Overview

The Epiphany™ architecture defines a multicore, scalable, shared-memory computing fabric. It

consists of a 2D array of mesh compute nodes connected by a low-latency mesh network-on-

chip. The Epiphany Software Development Kit (eSDK) is a state-of-the art software

development environment targeting the Epiphany multicore architecture. The eSDK is based on

standard development tools including an optimizing C-compiler, functional simulator, debugger,

and multicore integrated development environment (IDE). The eSDK enables out-of-the-box

execution of applications written in regular ANSI-C and does not require any C-subset, language

extensions, or SIMD style programming. The unparalleled energy efficiency of the Epiphany

architecture and the ease of use and fine grain control of the eSDK offer developers best-in-class

capabilities for the most demanding real-time applications. The Epiphany SDK framework is

illustrated in Figure 1.1 and contains the following key components:

 Optimized ANSI-C compiler (based on gcc)

 Robust multicore Eclipse IDE (on selected platforms)

 Multicore debugger (based on gdb)

 Multicore communication and hardware utility libraries

 Fast functional simulator with instruction trace capability.

Figure ‎1.1: Epiphany SDK

ECLIPSE IDE or TERMINAL

GCC
Compiler

GDB
Debugger Client

Debugger
HW-Interface/Server

User Application

Lightweight Run Time Kernel

BUILDDEBUG/RUN

HOST

Functional
Simulator

Epiphany
HAL

EPIPHANY HARDWARE PLATFORM

SY
ST

EM
-B

U
S/

U
SB

/E
TH

Epiphany Runtime Library (e-lib)

Standard-C Library (newlib) Math Library (libm)

11 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

1.2 Epiphany Memory Model

The Epiphany architecture uses a single, flat unprotected address space consisting of 2
32

 8-bit

bytes. Byte addresses are treated as unsigned numbers, running from 0 to 2
32

–1. This address

space is regarded as consisting of 2
30

 32-bit words, each of whose addresses is word-aligned,

which means that the address is divisible by 4. The word whose word-aligned address is A

consists of the four bytes with addresses A, A+1, A+2 and A+3. Each mesh node has a local,

aliased, range of local memory that is accessible by the mesh node itself starting at address 0x0.

On 32KB chip models, it ends at address 0x00007FFF. Each mesh node also has a globally

addressable ID that allows communication with all other mesh nodes in the system. The mesh-

node ID consists of 6 row-ID bits and 6 column-ID bits situated at the upper most-significant bits

(MSBs) of the address space. The complete memory is shown in Figure 1.2.

Figure ‎1.2: Epiphany Global Address Map

Data and code can be placed anywhere in the memory space or in external space, except for the

memory-mapped register space and reserved space, but performance is optimized when the data

and code are placed in separate local-memory banks.

RESERVED

INTERNAL MEMORY BANK 1

INTERNAL MEMORY BANK 0

INTERNAL MEMORY BANK 2

INTERNAL MEMORY BANK 30x00006000

0x00004000

0x00002000

0x00000000

MEMORY-MAPPED REGISTERS0x000F0000

LOCAL MEMORY 0x00000000

CORE_0_1

CORE_0_2

CORE_0_3

...

CORE_0_63

CORE_1_1

CORE_1_2

CORE_1_3

...

CORE_1_63

CORE_1_0

CORE_63_1

CORE_63_2

CORE_63_3

...

CORE_63_63

CORE_63_0

...

0x00100000

0x00200000

0x00300000

0x03F00000

0x04000000

0x04100000

0x04200000

0x04300000

0x07F00000

0xFC100000

0xFC200000

0xFC300000

0xFFF00000

0xFC000000LOCAL SPACE

GLOBAL SPACE

12 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

1.3 Epiphany Programming Framework

Each one of the Epiphany processor nodes can run independent programs. Figure 1.3 shows the

general programming flow for the Epiphany architecture, highlighting the independent build of

programs running on different cores and the use of a common loader to load the complete

multicore program onto the chip. The multicore IDE handles the detail of configuring and

building multicore projects.

Figure ‎1.3: Epiphany Program Build Flow

.O

E-GCC
C/C++

COMPILER

main0.c

E-LD
LINKER

E-OBJCOPY

.elf

.srec

.O

E-GCC
C/C++

COMPILER

main1.c

E-LD
LINKER

E-OBJCOPY

.elf

.srec

.O

E-GCC
C/C++

COMPILER

main15.c

E-LD
LINKER

E-OBJCOPY

.elf

.srec

LOADER

13 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

1.4 Epiphany SDK Directory Structure

The Epiphany SDK framework was designed to support multiple platforms, possibly mix-and-

matching development platform and deployment platform. Additionally, it is meant to support

multiple revisions of the package. As such, a few key components are being referred to by

symbolic links instead of their actual name. It is also relocatable across the filesystem, and the

root directory discussed here is the default location. Figure 1.4 shows the directory structure of

the installed Epiphany SDK.

Figure ‎1.4: Epiphany SDK Directory Structure

The eSDK framework contains these main components:

tools: The Epiphany GNU toolchain, Epiphany runtime libraries and the host-specific

software.

share

include

man

docs

host.armv7le-gnu.armv7l

tools

bin

include

lib

bsps examples

matmulemek4

zed_e16g3

parallella-16

/opt/adapteva

esdk.3.xx.xx.xx esdk.4.13.03.30esdk.5.13.07.10
esdk

(symlink)

current
(symlink)

e-eclipse

host
(symlink)

e-gnu
(symlink)

host.x86_64e-gnu.x86_64

Hello-World

14 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

bsps: Board Support Packages, with per-platform specific files like default linker scripts

and platform definition files.

docs: eSDK documentation, including the eSDK reference and the Architecture

Reference.

examples: Some code examples for working with the software framework.

e-eclipse: On some platforms, a Epiphany port for the Eclipse IDE is provided.

1.5 ESDK Installation

The eSDK is provided as a ready-to-install archive, downloadable from the Adapteva FTP site

(ftp.adapteva.com, for registered customers) or from the Parallella FPT site (ftp.parallella.org,

for Anonymous downloads). By default, the eSDK is installed at /opt/adapteva. Any other

path can be set as well. After downloading the eSDK archive, extract the file in the

/opt/adapteva directory (or other target directory) and create or update a symbolic link to the

root of the eSDK release. You may need administrator privilege to use the following commands.

Use “sudo” or equivalent as required. Following is the BASH command sequence:

$ REV=”4.13.03.30” # replace with the current revision

$ EDIR=”/opt/adapteva” # replace with preferred directory

$ ftp ... # get the eSDK archive tarball

$ mkdir -p ${EDIR} # create the root directory

$ tar xvf esdk.${REV}.tgz -C ${EDIR} # extract tarball

$ ln -sTf esdk.${REV} ${EDIR}/esdk # create a symlink to new eSDK

Next, library prerequisites have to be installed for the Epiphany compiler to work. On platforms

supporting the Eclipse IDE, Java Run-Time library is required as well:

$ apt-get install libmpfr-dev libgmp3-dev libmpc-dev openjdk-6-jre

If you use a 64-bit PC for cross-build host applications for a 32-bit embedded platform, you may

need to install a 32-bit layer support:

$ apt-get install ia32-libs

ftp://ftp.adapteva.com/
ftp://ftp.parallella.org/

15 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

In order to use the eSDK, some environment variables have to be defined. Adding the following

commands to your shell’s login script will define these automatically:

$ echo “EPIPHANY_HOME=${EDIR}/esdk” >> ~/.bashrc

$ echo '. ${EPIPHANY_HOME}/setup.sh' >> ~/.bashrc

1.6 Additional Documentation and Resources

This reference manual provides a brief overview of the extensive features available in the GNU

distributions and Eclipse IDE. The documentation provided should be enough to enable the

successful use of the Epiphany platform for most use cases. Advanced users who are looking for

additional features should review the complete manuals found at the following locations:

GCC Compiler: http://gcc.gnu.org/onlinedocs/gcc

LD Linker: http://sourceware.org/binutils/docs/ld

GAS Assembler: http://sourceware.org/binutils/docs/as

ELF Utilities: http://sourceware.org/binutils/docs/binutils

GDB Debugger: http://sourceware.org/gdb/current/onlinedocs/gdb

Newlib Standard C Libraries: http://sourceware.org/newlib

Eclipse-Indigo IDE: http://help.eclipse.org/indigo/index.jsp

http://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc.pdf
http://sourceware.org/binutils/docs/ld
http://sourceware.org/binutils/docs/as
http://sourceware.org/binutils/docs/binutils
http://sourceware.org/gdb/current/onlinedocs/gdb/
http://sourceware.org/newlib/
http://help.eclipse.org/indigo/index.jsp

16 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

2. Epiphany Multicore Development IDE (ECLIPSE)

Note: The Eclipse based Epiphany IDE is outdated and not in sync with the current generation of

Epiphany platforms, which means platforms newer than the EMEK3 and EMEK4 boards. Some

of the features presented in this chapter are not applicable to the ZYNQ based system such as

Parallella Prototype (ZedBoard) and Parallella computers.

In particular, the debugging and launching of an Epiphany application from the Eclipse IDE is

currently not supported. It is still a valuable tool for writing Epiphany applications, especially for

the host-accelerator model.

Currently, the IDE is not supported on the ARM based platforms, so one needs an x86 (PC)

based machine to use it.

17 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

2.1 Overview

The Epiphany SDK IDE is based on Eclipse, a multi-language and multi-platform software

development environment comprising an integrated development environment (IDE) and an

extensible plug-in system. The Eclipse development environment was started by IBM and

subsequently released as open source in 2001 and is today one of the world’s most popular

development environments with millions of users. The Epiphany IDE is multicore ready, and

includes all the features a programmer would expect from a state of the art IDE:

Creating, editing, navigating, and building C based projects

Integration with a GDB debugger

Multicore context viewing

Source level debugging

Figure ‎2.1 The Eclipse IDE

http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_%28computing%29

18 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

The rest of this chapter will go through a number of tutorials to explain the basic operations of

Eclipse.

2.2 Epiphany IDE tutorial

Run the Eclipse environment by typing eclipse at the Linux prompt:

$ ${EPIPHANY_HOME}/e-eclipse &

The Eclipse window opens. Choose the workspace which is where your projects and

environment will be saved:

Figure ‎2.2: The Workspace Launcher

The Eclipse Welcome window opens, ready for making the first project. Select the Workbench

icon to get to the project views.

19 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Creating a project

Next, select File → New → C Project. Choose a name for the new project in the Project

name field and select the Epiphany Executable (Multi Core) → Hello World

Epiphany Multicore C-Project type. The Epiphany tool chain is the only tool chain

option for this type of project. This project will generate a simple multicore sample project that

can be used as a template for building your system.

You can also choose an Empty or Hello World ANSI C project type under Executable.

The Linux GCC tool chain is used for creating a Linux x86 program that can be run in a native

Linux environment as a host application or as a software verification reference.

Figure ‎2.3: Project Definition Selection

20 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Press the Next> button and set the project’s basic settings. The number of rows and number of

columns set the size of the active portion of the Epiphany core matrix. The start row and start

column set the address (2D index) of the first core in the array. Please refer to the board support

package reference to get information regarding the actual memory map of a specific platform.

Figure ‎2.4: Application Target Cores Allocation

Press the Next> button twice to approve and then the Finish button. The wizard then creates

the sample project. Depending on the configuration, this step can take some time to complete.

21 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

The number of per-core and the common projects are visible plus an extra, non-source master

meta-project.

Eclipse Workbench work flow utilizes the Perspectives concept. A Perspective is the collection

of Views and Editors comprising the current state of the Workbench and are related to a certain

task (like code edit, application debug, etc.). When launched, the Workbench enters the C/C++

perspective which lets you edit code and build your application. Visible now is a simple

multicore Hello World style project which is a skeleton for developing your system. You should

add code which is common to all cores in the commonlib project. Code specific to a core should

be added to the relevant core’s project.

Figure ‎2.5: C/C++ Perspective for Multicore Application

22 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Building and executing

We recommend that you set the Save automatically before build option in the Window

→ Preferences → General → Workspace dialog before building the project. Also, before

loading and executing an application, make sure the e-server is running, to allow Eclipse

communicate with the hardware target.

You may need to set the memory layout of your application. Depending on the size of your code

and data, you can place them in the external or internal memory. The newlib code (the Standard

C library) and the program stack can be placed internally or externally as well. This can be done

using special linker keywords, as described in chapter 5.5. However, the fastest and

recommended way is to choose one of the three predefined linker description files that are

provided with the hardware target package. Set the LDF option in by selecting one of the

per-core projects and from the menu Project → Properties → C/C++ Build →

Settings → linker description file browse for the required *.ldf file, located in the

bsps directory of the eSDK installation. Then, apply the settings to the other core projects by

right-clicking on the core project and selecting the action from the context menu.

You can now build and run the application. Select Project → Build All to build all the

projects. To simply load and run the project on the hardware, select the meta-project, then select

menu Run → Run Configurations… to create the context. Right-click on the Epiphany

Multicore Application (loader) and select New. The application item appears like in

Figure 2.6. Select the application and press Run. The application will now be loaded on the

target via the loader, the target will be reset and the application will run.

Debugging a project

After building the project, as described above, select menu Run → Debug Configurations….

Right-click on the Epiphany Multicore Applications (gdb) and select New. The

application item appears. Select the application item. Make sure that in the Projects tab, the

Enable auto build option is selected and press Debug. The Perspective should now change

to the Debug perspective. Depending on a previous Eclipse configuration, the perspective will

not change. You can do this manually by pressing the Open Perspective button at the top-

right corner.

23 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Figure ‎2.6: Run Configurations Settings

Figure ‎2.7: Debug Configuration Settings

24 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Figure ‎2.8: Debug Perspective

In the Debug view you can see a session for the meta-project and the sessions for the multiple

core projects. Each core session includes levels for Target, Threads and Contexts. The first

thread is intended for interactive GUI style debugging. The e-gdb thread is intended for Console

style debugging. The threads work in conjunction with each-other and actions taken in one affect

the other.

In the meta-project session there are two levels as well, where the Target level lets you Resume,

Suspend and Terminate all core projects and the Thread level lets you perform the regular step-

wise debug operations. Note that multiple Threads and Contexts can be selected (by pressing the

Ctrl key while selecting the items) and the debug operations will take place on the multiple

25 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

selected sessions. Breakpoints that are set in the common source files will affect all projects, and

the execution of each thread will be halted when the breakpoint is reached.

If the application includes standard output and input function calls (like printf()), the

interaction is made through the Console view. Select the associated e-gdb process from the

Debug view and the relevant Console becomes active.

Debugging a single core of a multicore project

It is sometimes required, during a development of the application, to debug just one core. In this

case, select the binary executable (*.elf file) of the core you want to debug. Right-click and

choose Debug As > → Debug Configurations…. Right-click on Epiphany Single

Core Application (gdb) and select New. Select the new item. You should now change the

Port Number to the one that is associated with the core and press the Debug button.

Note: Debugging and launching an Epiphany application from the Eclipse IDE is currently not

supported on all platforms.

26 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Creating a single core application

If the required application should be developed and run on a single core, you can choose the

Epiphany Executable (Single Core) type from the Project Definition Selection dialog

(Figure 2.3) and continue with the similar steps to create, edit, build and debug the application.

Figure ‎2.9: C/C++ Perspective for Single Core Application

27 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

2.3 Online Eclipse Help for Common Tasks

The following topics contain links to further online help guides for some useful general tasks

supported by the Eclipse development environment:

Adding Include Paths and Symbols:

http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_proj_paths.htm

Customizing the C/C++ editor:

http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_cust_cpp_editor.htm

Navigating C/C++ declarations:

http://help.eclipse.org/helios/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_open_declarations.htm

Refactoring C/C++ Code:

http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_refactoring.htm

Debugging a program:

http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_o_debug.htm

http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_proj_paths.htm
http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_cust_cpp_editor.htm
http://help.eclipse.org/helios/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_open_declarations.htm
http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_refactoring.htm
http://help.eclipse.org/indigo/topic/org.eclipse.cdt.doc.user/tasks/cdt_o_debug.htm

28 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

2.4 Updating the Eclipse Installation

Updating the Eclipse installation can be done in two ways – manual and automatic. Manual

mode involves downloading a plugins pack and extracting it in the eclipse/plugin directory.

In order to have it done automatically, use Eclipse’s Install New Software feature available from

the Help menu. A dialog like this opens:

Figure ‎2.10: Install New Software Dialog

29 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Click Add… and fill in “Adapteva Eclipse Update Site” for the name and

http://ftp/adapteva.com/eclipse for the location. Then, a list of available updates

appears. Check the optional checkboxes to filter out irrelevant updates and select the required

update. Then click Next> to confirm.

30 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

3. C/C++ Compiler (E-GCC)

3.1 Overview

This chapter gives a high level overview of the Epiphany compiler, based on the popular GNU

GCC compiler. The purpose of this chapter is to summarize the important features and to

document additional features that are not included in the baseline GNU distribution.

The GCC compiler supports the following versions of C/C++:

 ISO/IEC 9899:1990 (C89)

 ISO/IEC 9899:1999 (C99)

 ISO/IEC 9899:2011 (C11) (partial)

 ISO/IEC 14882:1998 (C++98)

 ISO/IEC 14882:2011 (C++11) (partial)

Support for C99 is substantial but not 100% complete. For a review of the minor C99 features

not supported in GCC, please refer to: http://gcc.gnu.org/c99status.html. Similarly, C11 and

C++11 are new standards and their support is partial. More info here:

http://gcc.gnu.org/onlinedocs/gcc/Standards.html.

3.2 Simple Example

The following example shows how to use the compiler to create an executable from a simple

program source file without any optimization.

$ e-gcc hello_world.c -o hello_world.elf

The following example shows some the usage of some of the compilation switches used to

produce executables highly optimized for speed at the expense of code size.

$ e-gcc my_fft.c -o my_fft.elf -O3 -ftree-vectorize -funroll-loops \

 -mfp-mode=round-nearest -mfused-madd -ffast-math

http://gcc.gnu.org/c99status.html

31 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

3.3 Compiler Command-line Options

The GCC compiler supports a wide range of options allowing for fine grain compilation process.

The following tables summarize the compiler most commonly used options grouped by type.

Table ‎3.1: General Compiler Options

Option Function

-c Compile or assemble source code, but do not link

-S Stop after compilation proper; do not assemble

-E Stop after the preprocessing stage

-o file Place output in file file.

-x language Specify explicit language of input file rather than letting GCC

determine language based on file name suffix. Valid values for

language are: ‘c’, ‘c++’

-std=standard Determine the language standard. To support C99, specify “-std=c99”

-D name=definition The contents of definition are tokenized and processed as if they

appeared in a ‘#define’ directive.

-Wa,option Pass option as an option to the assembler.

-llibrary

-l library

Search the library named library when linking. It makes a difference

where in the command you write this option; the linker searches and

processes libraries and object files in the order they are specified. The

directories searched include several standard system directories plus

any that you specify with ‘-L’.

--version Print the version number of the compiler

-Idir Add the directory dir to the list of directories to be searched for header

files.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

--help Print (on the standard output) a description of the command line

options understood by gcc.

--help=class Print (on the standard output) a description of the command line

options understood by the compiler that fit into a specific class. The

class can be one of ‘optimizers’, ‘warnings’, ‘target’, ‘params’, or

‘language’.

@file Read command-line options from file.

32 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table ‎3.2: Warning Options

Option Function

-w Inhibit all warning messages

-Werror Make all warnings into errors

-Werror= Make the specified warning into an error

-fsyntax-only Check the code for syntax errors, but don’t do anything beyond that.

-Wfatal-errors This option causes the compiler to abort compilation on the first error

occurred rather than trying to keep going and printing further error messages.

-pedantic Issue all the warnings demanded by strict ISO C and ISO C++; reject all

programs that use forbidden extensions, and some other programs that do not

follow ISO C and ISO C++

-Wall This enables all the warnings about constructions that some users consider

questionable, and that are easy to avoid. We highly recommend running with

this switch turned on for new code. The switch turns on the following

warnings:

-Waddress -Warray-bounds (only with ‘-O2’)

-Wc++0x-compat -Wchar-subscripts

-Wimplicit-int -Wimplicit-function-declaration

-Wcomment -Wformat

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)

-Wmissing-braces -Wnonnull

-Wparentheses -Wpointer-sign

-Wreorder -Wreturn-type

-Wsequence-point -Wsign-compare (only in C++)

-Wstrict-aliasing -Wstrict-overflow=1

-Wswitch -Wtrigraphs

-Wuninitialized (only with ‘-O1’ and above)

-Wunknown-pragmas -Wunused-function

-Wunused-label -Wunused-value

-Wunused-variable

Table ‎3.3: Debug Options

Option Function

-g Produce debugging information in stabs format.

-pg Generate extra code to write profile information suitable for the analysis

program gprof.

Table ‎3.4: Linker Options

Option Function

-nostartfiles Do not use the standard system startup files when linking.

-nodefaultlibs Do not use the standard system libraries when linking.

-nostdlib Do not use the standard system startup files or libraries when linking.

33 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

-s Remove all symbol table and relocation information from the executable.

-static On systems that support dynamic linking, this prevents linking with the

shared libraries. On other systems, this option has no effect.

-shared Produce a shared object which can then be linked with other objects to

form an executable.

-Xlinker option Pass option as an option to the linker.

Table ‎3.5: Optimization Options

Option Function

-O0 Reduce compilation time and make debugging produce the expected

results. This is the default.

-O1 ‘-O or –O1’ turns on the following optimization flags:

-fauto-inc-dec -fcprop-registers

-fdce -fdefer-pop

-fdelayed-branch -fdse

-fguess-branch-probability -fif-conversion2

-fif-conversion -finline-small-functions

-fipa-pure-const -fipa-reference

-fmerge-constants -fsplit-wide-types

-ftree-ccp -ftree-ch

-ftree-copyrename -ftree-dce

-ftree-dominator-opts -ftree-dse

-ftree-fre -ftree-sra

-ftree-ter -funit-at-a-time

‘-O’ also turns on ‘-fomit-frame-pointer’

-O2 GCC performs nearly all supported optimizations that do not involve a

space-speed tradeoff. It turns on all optimization flags in O1 and the

following additional flags:

-fthread-jumps -falign-functions

-falign-jumps -falign-loops

-falign-labels -fcaller-saves

-fcrossjumping -fcse-follow-jumps

-fcse-skip-blocks -fdelete-null-pointer-checks

-fdevirtualize -fexpensive-optimizations

-fgcse -fgcse-lm

-finline-small-functions -findirect-inlining

-fipa-sra -foptimize-sibling-calls

-fpartial-inlining -fpeephole2

-fregmove -freorder-blocks

-freorder-functions -frerun-cse-after-loop

-fsched-interblock -fsched-spec

34 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

-fschedule-insns -fschedule-insns2

-fstrict-aliasing -fstrict-overflow

-ftree-switch-conversion -ftree-pre

-ftree-vrp

-O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and

also turns on:

-finline-functions -funswitch-loops

-fpredictive-commoning -fgcse-after-reload

-ftree-vectorize -fipa-cp-clone

-Os Enables all optimization switches of O2, except for the following:

-falign-functions -falign-jumps

-falign-loops -falign-labels

-freorder-blocks -freorder-blocks-and-partition

-fprefetch-loop-arrays -ftree-vect-loop-version

-funroll-loops Unroll loops whose number of iterations can be determined at compile

time or upon entry to the loop.

--param name=value In some places, GCC uses various constants to control the amount of

optimization that is done.

max-unrolled-insns:

The maximum number of instructions that a loop should have if that

loop is unrolled, and if the loop is unrolled, it determines how many

times the loop code is unrolled.

max-unroll-times:

The maximum number of unrollings of a single loop.

Table ‎3.6: Floating Point Math Options

Option Function

-fsingle-precision-

constant

Treat floating point constant as single precision constant instead of

implicitly converting it to double precision constant.

-funsafe-math-

optimizations

Enables ‘-fno-signed-zeros’, ‘-fno-trapping-math’, ‘-fassociative-math’

and ‘-freciprocal-math’.

-freciprocal-math Allow the reciprocal of a value to be used instead of dividing by the

value if this enables optimizations.

-ffast-math Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’, ‘-ffinite-math-

only’, ‘-fno-rounding-math’, ‘-fno-signaling-nans’ and ‘-fcx-limited-

range’. This option causes the preprocessor macro __FAST_MATH__

to be defined

-fno-trapping-math Compile code assuming that floating-point operations cannot generate

user visible traps.

-fno-signed-zeros Allow optimizations for floating point arithmetic that ignore the

signedness of zero.

35 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table ‎3.7: Epiphany Unique Options

Option Function

-mprefer-short-insn-regs Preferentially allocate registers that allow short instruction

generation. This can result in increased instruction count, so if this

reduces or increases code size might vary from case to case.

-mbranch-cost=num

Set the cost of branches to roughly num “simple” instructions. This

cost is only a heuristic and is not guaranteed to produce consistent

results across releases.

-mcmove Enable the generation of conditional moves.

-mnops=num Emit num nops before every other generated instruction.

-mno-soft-cmpsf

For single-precision floating point comparisons, emit an fsub

instruction and test the flags. This is faster than a software

comparison, but can get incorrect results in the presence of NaNs,

or when two different small numbers are compared such that their

difference is calculated as zero. The default is -msoft-cmpsf, which

uses slower, but IEEE-compliant, software comparisons.

-mno-round-nearest Make the scheduler assume that the rounding mode has been set to

truncating. The default is -mround-nearest.

-mlong-calls If not otherwise specified by an attribute, assume all calls might be

beyond the offset range of the b / bl instructions, and therefore load

the function address into a register before performing a (otherwise

direct) call. This is the default.

-mshort-calls If not otherwise specified by an attribute, assume all direct calls are

in the range of the B/BL instructions, so use these instructions for

direct calls. The default is -mlong-calls.

-msmall16 Assume addresses can be loaded as 16 bit unsigned values. This

does not apply to function addresses for which -mlong-calls

semantics are in effect.

-mfp-mode=mode Set the prevailing mode of the floating point unit. This determines

the floating point mode that is provided and expected at function

call and return time. Making this mode match the mode you

predominantly need at function start can make your programs

smaller and faster by avoiding unnecessary mode switches.

mode can be set to one the following values:

`caller'

Any mode at function entry is valid, and retained or restored

36 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

when the function returns, and when it calls other functions.

This mode is useful for compiling libraries or other

compilation units you might want to incorporate into

different programs with different prevailing FPU modes,

and the convenience of being able to use a single object file

outweighs the size and speed overhead for any extra mode

switching that might be needed, compared with what would

be needed with a more specific choice of prevailing FPU

mode.

`truncate'

This is the mode used for floating point calculations with

truncating (i.e. round towards zero) rounding mode. That

includes conversion from floating point to integer.

`round-nearest'

This is the mode used for floating point calculations with

round-to-nearest-or-even rounding mode.

`int'

This is the mode used to perform integer calculations in the

FPU, e.g. integer multiply, or integer multiply-and-

accumulate.

-mno-postmodify Code generation tweaks that disable, respectively, splitting of 32 bit

loads, generation of post-increment addresses, and generation of

post-modify addresses. The defaults are msplit-lohi, -mpost-inc,

and -mpost-modify.

-mnovect-double Change the preferred SIMD mode to SImode. The default is -

mvect-double, which uses DImode as preferred SIMD mode.

-max-vect-align=num

The maximum alignment for SIMD vector mode types. num may

be 4 or 8. The default is 8.

-m1reg-reg

Specify a register to hold the constant −1, which makes loading

small negative constants and certain bitmasks faster. Allowable

values for reg are r43 and r63, which specify to use that register as

a fixed register, and none, which means that no register is used for

this purpose. The default is -m1reg-none.

37 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

For the Epiphany architecture, some useful optimization options are -falign-loops=8

and -falign-functions=8. These options direct the compiler to generate code, where the

first instructions in the body of a loop or in a function are double-word aligned. Thus, the

processor’s alignment buffer is kept full from the first fetch after a branch (pipeline

flush). -ffast-math can make math calculation faster by omitting some floating-point

calculation restrictions and relaxing the standard conformance.

3.4 GNU Function Attributes

In GCC, you declare certain things about functions called in your program which help the

compiler optimize function calls and check your code more carefully. The keyword

__attribute__ allows you to specify special attributes when making a declaration. This

keyword is followed by an attribute specification inside double parentheses:

alias aligned alloc_size

always_inline artificial cold

const constructor deprecated

destructor error externally_visible

flatten format format_arg

gnu_inline hot malloc

noreturn returns_twice noinline

nonnull nothrow pure

sentinel no_instrument_function section

used unused weak

warn_unused_result warning

3.5 Epiphany Specific Compiler Attributes

The Epiphany compiler also supports a number of attributes used by the linker descriptor file for

easy and explicit memory management. These attributes can be found in the linker chapter of this

manual.

38 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

4. Assembler (E-AS)

4.1 Overview

The Epiphany assembler, ‘e-as’, parses a file of assembly code to produce an object file for use

by the linker ‘e-ld’.

4.2 Simple Example

The following example shows how to use the assembler to create an object file.

$ e-as my.s -o my-object-file.o

4.3 Command Line Options

Table ‎4.1: Assembler Command Line Options

Option Function

-o file Create object file with name file.

-W Suppress warning messages

--version Print the version number of the assembler

-Idir Add the directory dir to the list of directories to be searched for .include files

-g Generate debugging information

-L Keep local symbols

--help Print (on the standard output) a description of the command line options

4.4 General Syntax

The ‘e-as’ assembler syntax closely follows the “AT&T” style of assembly programming.

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate symbols,

and to make programs neater for people to read.

There are four ways of rendering comments to ‘e-as’:

Anything from ‘/*’ through the next ‘*/’ is a comment. There is no nesting of comments

Anything to the right of the character ‘;’ is a comment

Anything to the right of the character ‘#’ is a comment

Anything to the right of ‘//’ is a comment

39 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

A symbol is one or more characters chosen from the set of all letters (both upper and lower case),

digits and underscore ‘_’.

A statement ends at a newline character (‘\n’) or line separator character. The newline or

separator character is considered part of the preceding statement. Newlines and separators within

character constants are an exception: they do not end statements. It is an error to end any

statement with end-of-file: the last character of any input file should be a newline.

You may write a statement on more than one line if you put a backslash (‘\’) immediately in

front of any newlines within the statement. When ‘e-as’ reads a backslashed newline both

characters are ignored. You can even put back-slashed newlines in the middle of symbol names

without changing the meaning of your source program.

A constant is a number, written so that its value is known by inspection, without knowing any

context, as shown in the examples below:

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-31415926535E-10 # (-PI), a flonum.

A string is written between double-quotes. It may contain double-quotes or null characters. The

way to get special characters into a string is to escape these characters: precede them with a

backslash ‘\’ character. For example ‘\\’ represents one backslash: the first ‘\’ is an escape

which tells as to interpret the second character literally as a backslash (which prevents ‘e-as’

from recognizing the second ‘\’ as an escape character).

Integer values can be expressed in multiple formats for ease of use:

A binary integer is ‘0b’ or ‘0B’ followed by zero or more of the binary digits ‘01’.

An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).

40 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

A decimal integer starts with a non-zero digit followed by zero or more digits (‘0123456789’).

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen from

‘0123456789abcdefABCDEF’.

Integers have the usual values. To denote a negative integer, use the unary minus operator ‘-’.

41 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

4.5 Assembler Syntax Reference

Table ‎4.2: Assembler Control Directives

Directive Description Syntax Example

.include Include a file .include “file” .include “bsp0.inc”

.balignw Halfword align the following code to

alignment byte boundary (default=4).

Fill skipped words with fill

(default=0).

.balignw

{alignment}

{,fill}

.balignw 8,0x01a2

.balignl Word align the following code to

alignment byte boundary (default=4).

Fill skipped words with fill

(default=0).

.balignl

{alignment}

{,fill}

.balignl 8,0x01a2

.end Marks the end of the assembly file.

Data following this directive is not

processed.

.end .end

.fail Generates errors or warnings during

assembly.

.fail expr .fail 1

.err Generate an error during assembly. .err .err

.print Print a string to standard output during

assembly.

.print string .print “Assembly

error”

.section Tell the assembler to assemble the

following in section expr . expr can be

either .text, .data, .bss, or any symbol

described in the linker description file

.section expr .section data

.text Tells assembler to process the

following as ’text’ and tells linker to

place it in data memory area

.text

{subsection}

.text

.data Tells assembler to process the

following as ‘data’ and tells linker to

place it in data memory area

.data

{subsection}

.data

.bss Tells assembler to process the

following as ‘bss ‘and to place it in bss

memory area

.bss

{subsection}

.bss

.struct Tells assembler to assemble the

following in an absolute section

.struct expr .struct 0

field1:

.struct field1+4

field2:

.org Following code is inserted at the start

of the specified section plus the offset

specified as new-lc.

.org new-lc .org 0x2000

42 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table ‎4.3: Assembler Symbol Directives

Directi

ve

Description Syntax Example

.equ |

.set

Set value of symbol equal to expr .set symbol , expr .set Version, “0.1”

.equiv Sets the value of symbol equal to

expr and generates an error if it was

previously defined.

.equiv symbol, expr .equiv Version,

“0.1”

.global Makes symbol visible to linker .global symbol .global MyFunc

Table ‎4.4: Assembler Constant Directives

Directive Description Syntax Example

.byte Define byte expr (8 bits) in

memory

.byte expr{,…} .byte 25,0x11,031

.hword | .short Define hword expr (32 bits) in

memory

.hword expr{,…} .hword 0x5

.word | .int |

.long

Define word expr (32 bits) in

memory

.word expr{,…} .word 0x32

.ascii Define string, non-zero

terminated array of bytes.

.ascii expr {….} .ascii “Hello”

.asciz | .string Define string, zero terminated

array of bytes.

.string expr {….} .string “Hello

World!\”

.float Define 32bit IEEE number in

memory

.float expr .float

0f3.14,0f359.1

.double Define 64bit IEEE number in

memory

.double expr .double 0f2e1

.fill Generate repeat copies of value

that is of size size and

.fill repeat {,size }

{,value}

.fill 32,4,0xffffffff

Table ‎4.5: Assembler Looping Directives

Directive Description Syntax Example

.rept Repeat the sequence of lines

between .rept end .endr count

number of times

.rept count .rept 10

.endr Ends .rept sequence .endr .endr

43 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table ‎4.6: Assembler Conditional Directives

Directive Description Syntax Example

.if Assembles if absolute expression is

not zero

.if {absolute_expr} .if(2+4)

.elseif Used in conjunction with .if .elseif

{absolute_expr}

.elseif(2+3)-5

.else Used in conjunction with .if .else .else

.endif Ends an .if block .endif .endif

.ifdef Assembles if symbol exists .ifdef symbol .ifdef _my_test_

.ifndef Assembles if symbol does not exists .ifndef symbol .ifndef _my_test_

.ifc Assemble if strings are the same .ifc string1,string2 .ifc “str1”,”str2”

.ifnc Assemble if strings are not the same .ifnc string1,string2 .ifnc “str1”,”str2”

Table ‎4.7: Assembler Macro Directives

Directive Description Syntax Example

.macro Defines a macro.

 A macro can be defined without

arguments

 Arguments can be accessed by

name

 Macros can be accessed as

ordered list or by reference

arguments

..macro name

{args}

Definition:

.macro ArgMacro

arg1,arg2

Use:

ArgMacro 10,11

ArgMacro

arg2=11,arg1=10

.endm Marks the end of a macro .endm .endm

\@ Pseudo variable that contains the

macro number . Can be used to

generate a unique number on every

macro definition

\@ MyLable@

Table ‎4.8: Assembler Digit Encoding

Type Base Prefix Digits Example

Decimal Integer 10 0-9 67

Hexadecimal Integer 16 0x or 0X 0-9,A-F 0x43

Octal Integer 8 0 0-7 083

Binary Integer 2 0b or 0B 0-1 0b01000011

Floating Point Number 10 0f or 0F 0-9 0f0.67e+2

Character n/a ‘ ASCII Symbol ‘C

String n/a “ and “ ASCII Symbol(s) “Sixty Seven”

44 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table ‎4.9: Assembler Expression Operators

Operation Symbol Precedence

Negate -

Highest

Lowest

Compliment ~

Multiplication *

Division /

Remainder %

Left Shift << or <

Right Shift >> or >

Bitwise OR |

Bitwise AND &

Bitwise XOR ^

Bitwise OR-NOT !

Addition +

Subtraction -

45 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

5. Linker (E-LD)

5.1 Overview

The Epiphany linker ‘e-ld’ combines a number of objects and archives, relocates their data and

resolves symbol references. The following section gives a brief overview of the operations of the

linker.

5.2 Simple Examples

The following example shows how to use the linker to create an elf executable from an object

file using the default linker file for simulation using the Epiphany instruction set simulator.

$ e-ld my_object.o -o exec.elf

The following example shows how to use the linker to create an elf executable for the Epiphany

multicore evaluation kit.

$ e-ld –T $EPIPHANY_HOME/bsps/zedboard/fast.ldf \

 my_object.o -o exec.elf

46 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

5.3 Command Line Options

Table ‎5.1: Linker Command Line Options

Option Function

-Lsearchdir

--library-path=searchdir

Adds directory paths to the list of paths that ‘e-ld’ will search for

archive libraries and linker control scripts. The option can be used

multiple times, in which case directories are searched in the order

in which they are specified on the command line. If searchdir

begins with =, then the = will be replaced by the sysroot prefix, a

path specified when the linker is configured.

-e entry

--entry=entry

The entry option can be used to specify the explicit symbol for

beginning execution of your program, rather than the default entry

point. If there is no symbol named entry, the linker will try to parse

entry as a number, and use that as the entry address. (Numbers

without a prefix will be interpreted in base 10; numbers starting

with 0x will be interpreted as base 16.)

-M

--print-map

Prints a link map to the standard output, including information

about: Object file memory placement, Common symbol,

allocation, Symbol value assignments

-o output

--output=output

Specifies name of the output file of the link process. Without this

option, the default output name is ‘a.out’.

-s

--strip-all

Omit all symbol information from the output file.

-S

--strip-debug

Omit debugger symbol information (but not all symbols) from the

output file.

-T scriptfile

--script=scriptfile

Replaces the default linker script file with scriptfile. If script file

does not exist in the current directory, the linker looks for it in the

directories specified by any `-L' options. Multiple `-T' options

accumulate.

-u symbol

--undefined=symbol

Forces symbol to be entered in the output file as an undefined

symbol.

@file Read command-line options from file. Options in file are separated

by whitespace. The file itself may contain additional file may

@file options, allowing for modular linker configuration.

47 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

5.4 Linker Script Overview

The link process is controlled by a linker script written in the GNU linker command language.

The purpose of the linker script is to describe how the sections in the input files should be

mapped into the output file, and to control the memory layout of the output file. If you do not

supply a linker file to ‘e-ld’, it will use a default linker file.

Executables compiled with the default linker will only execute correctly using the ‘e-run’

instruction set simulator and will not work correctly when loaded on specific hardware targets.

To correctly link for specific hardware targets, you should use the ‘-T’ option to specify one of

the board specific linker files that come with the board support package (BSP) or your own

custom linker file.

The following list highlights some of the key concepts of the linker:

 The assembler emits an object file (partial program) with an assumed start at address 0. The

linker then reads one or more object files and combines their contents to form a runnable

program with no program overlap and all addresses completely resolved.

 The linker script contains a number of defined input sections and output sections. These

section names can be used within the source code to assist in fine grained code and data

placement as explained in the following sections.

 Every object file has a list of symbols, known as the symbol table. A symbol may be

defined or undefined. Each symbol has a name, and each defined symbol has an address.

 When compiling a C program into an object file, you will get a defined symbol for every

defined function and global or static variable. Every undefined function or global variable

which is referenced in the input file will become an undefined symbol.

48 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

5.5 Explicit Code and Data Memory Management

The linker description files that come with the different Epiphany Board Support Packages have

a number of key words that allow fine grained management of code and data placement from

within the C/C++ source code. The keywords gives the programmer and support libraries

complete control of the placement of data and code within the memory system on a per-symbol,

per-file, and per-object library. The keywords are derived from section names within the linker

descriptor file and can be augmented by the user at his discretion. Table 5.2 gives a summary of

the memory placement keywords available in all Epiphany BSPs that can be used within your C

code.

Table ‎5.2: Memory Management Linker Symbols

Keyword Meaning

__core_row__ The row ID of the core

__core_col__ The column ID of the core

__stack_start__ Stack starting point

__heap_start__ Heap starting point

__heap_end__ Heap ending point

Table 5.3 shows configurations of the three basic linker descriptor files. The ‘legacy’ scenario is

to be used for bringing up code quickly but will run slowly since all data and code is placed in

external memory. The ‘fast’ scenario is used to place user code internally and standard library

`code externally. The ‘internal’ scenario can be used for to effectively place all code and data in

the local memory by default. The three descriptor files effectively determine the default

placement of all sections and symbols within the objects. The user can override these settings on

an individual basis from the C/C++ source code using the attributes defined in Table 5.2 to

specify that certain variables and/or functions should be placed in specific program output

sections. Note that with all of the predefined LDF’s, the heap is allocated externally. This means

that use of stdio library will render the program very slow.

49 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Table ‎5.3: Memory Management Scenarios

File USER

CODE &

DATA

STANDARD

LIBRARY

STACK NOTE

legacy.ldf External

SDRAM

External

SDRAM

External

SDRAM

Use to run any legacy code

with up to 1MB of combined

code and data.

fast.ldf Internal

SRAM

External

SDRAM

Internal

SRAM

Places all user code and static

data in local memory,

including the stack. Use to

implement fast critical

functions. It is the user’s

responsibility to ensure that

the code fits within the local

memory.

internal.ldf Internal

SRAM

Internal

SRAM

Internal

SRAM

Places all code and static data

in local memory, including

the stack. Use to implement

fastest applications. It is the

user’s responsibility to ensure

that the code fits within the

local memory.

Table ‎5.4: Linker Sections

Section User Controllable Sections

.text Application code, read only

.data Application data (global variables that are not constant)

.rodata Application data, read only (constants, strings)

.bss Static variables initialized to zero

.text_bank0 Starts at end of reserved section in bank0

.text_bank1 Starts at the beginning of bank1

.text_bank2 Starts at the beginning of bank2

.text_bank3 Starts at the beginning of bank3

.data_bank0 End of .text_bank0

.data_bank1 End of .text_bank1

.data_bank2 End of .text_bank2

.data_bank3 End of .text_bank3

.code_dram Code section in external memory

.shared_dram Data section in external memory

.heap_dram Heap section in external memory

50 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

5.6 Memory Management Examples

The Epiphany SDK gives the programmer complete control over data and code placement

through section attributes that can be embedded in the source code. Memory management

attributes placed in the source code will be ignored by the standard Linux GCC compiler.

The following examples illustrate some attributes that can be placed inside the source code or in

a stub ‘*.c’ file that gets compiled with the rest of the application source file. The general

attribute should be placed outside the main routine.

1. How to specify the core where the executable will run:

asm(".global __core_row__;");

asm(".set __core_row__,0x20;");

asm(".global __core_col__;");

asm(".set __core_col__,0x24;");

2. How to specify where the stack should start:

asm(".global __stack_start__;");

asm(".set __stack_start__,0x1ff0;");

3. How to force memory placement of a static variable:

float data[N] __attribute__ ((section (“.data_bank3”)));

4. How to force memory placement of a function in declaration:

int my_fft(int *ptr) __attribute__ ((section (“.text_bank0”)))

5. How to force a long jump attribute on a function situated in external SDRAM:

int dump_memory(int *ptr) __attribute__ ((long call));

51 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

6. ELF Utilities

6.1 Overview
The Epiphany SDK includes several utilities that can be used to effectively manipulate binary

object files. This chapter provides a brief overview of these utilities.

6.2 Utility Summary
Table 6.1 explains the major binary manipulation utilities within the Epiphany SDK and their

respective arguments. All utilities use the --help switch to print out a complete set of arguments.

Table ‎6.1 ELF Manipulation Programs

Utility Note Usage + Arguments

e-ar Creates and

manipulates archive

content

-r Replace existing or insert new files into archive

e-nm Lists the symbols in an

object file

e-objcopy Copies a binary file,

possibly transforming

it in the process

e-objcopy [options] in-file [out-file]

-S Remove all symbol and relocation information

-g Remove all debugging information

--srec-forceS3 Generate srec type output

--gap-fill <val> Fill gaps between sections with <val>

--set-start <addr> Set the start address to <addr>

-W <name> Force <name> symbol to be marked weak

--strip-unneeded Remove all unneeded symbols

--prefix-sections <prefix> Add prefix to section names

--prefix-symbols <prefix> Add prefix to symbol names

e-objdump Displays information

about the content of

object files

e-objdump [options] file

-x Display the contents of all headers

-d Display content of all executable sections

-D Display content of all sections

-t Display content of of the symbol tabe

-T Display content of dynamic symbol table

-r Display relocation entries in file

---section=NAME Only display section NAME

e-size Lists the section sizes

within an object file

e-size [options] file

-o|-d|-x Display numbers in octal, decimal, or hex

e-strip Strips symbols from

object files

e-strip [options] file

--remove-section=<name> Remove section <name>

-g Remove all debug symbols and sections

-s Remove all symbols and relocation information

-o <file> Place stripped output into <file>

52 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

7. Instruction Set Simulator (E-RUN)

7.1 Overview
The Epiphany Instruction Set Simulator (ISS) is an accurate and fast functional representation of

the Epiphany Instruction Set Architecture. The simulator accurately models the instruction set

and register map of a single Epiphany core, but does not model pipeline behavior or any of the

non-CPU hardware mechanisms such as the eMesh Network-On-Chip, DMA, or timers. The

simulator runs in a host Linux environment, takes a binary ELF file as an input and supports

standard I/O. To simplify program debugging and profiling, the simulator supports outputting

program traces.

7.2 Simple Example
The following example shows how to simulate the execution of an Epiphany elf executable using

the ISS within a Linux host platform.

$ e-run hello_world.elf

The simulator will print out “Hello World!”

To get an instruction trace of the executed program, use the ‘-t’ option before the hello_world.elf

argument as follows:

$ e-run -t hello_world.elf

7.3 Command Line Options

Note that the elf file should be the last argument given at the command line.

Table ‎7.1: Simulator Command Line Options

Option Function

-t, --trace Output simulated instruction trace to scree

--memory-region ADDRESS,SIZE Defines a memory region as valid for simulator.

Default is to allow 0x01MB

--help Prints help

53 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

8. Hardware Connection Server (E-SERVER)

8.1 Overview
The GDB client runs on the Linux host machine and communicates with the Epiphany GDB

server using GDB's internal RSP (remote serial protocol) over TCP/IP ports. The e-server

responds to the GDB client or Loader requests and controls the hardware or hardware emulation

model. Each core in the system needs a separate GDB client and connects to the GDB server

using a unique TCP/IP port. By default cores connect to the e-server starting at port 51000. The

e-server responds to the e-loader requests in the dedicated port.

An illustration of the GDB server/client operations is shown below:

Figure ‎8.1: The eServer Client-Target Connection Concept

54 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

8.2 Simple Example

To start the Target Server open a terminal window and type the following in the command line:

$ e-server –hdf ${EPIPHANY_HOME}/bsps/zedboard/zed_E16G3_512mb.xml

The debug server now responds with status messages regarding the connection process and the

results of the memory test, if performed. The output should be similar to the following:

Using the HDF file: zed_E16G3_512mb.xml

Listening for RSP on port 51000

Listening for RSP on port 51001

Listening for RSP on port 51002

Listening for RSP on port 51004

Listening for RSP on port 51005

:

Listening for RSP on port 51006

Listening for RSP on port 51007

Listening for RSP on port 51010

Listening for RSP on port 51009

Listening for RSP on port 51011

8.3 Command Line Options

Table ‎8.1: eServer Command Line Options

Argument Note

-hdf file Mandatory argument, specifies the platform specific description

file containing platform definitions, normally located in the

esdk/bsps/{platform} directory

-p <port_base> Assign base socket port number for the server. The default is

51000

--show-memory-map Print out the supported memory map

--test-memory Test the memory before serving the debugger clients
 (*only for select

platforms)

-Wpl <options> Pass comma-separated <options> on to the platform driver

-Xpl <arg> Pass <arg> on to the platform driver

--version Display the version number and copyright info

55 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

8.4 Target Server Connection API

The run-time connection from a host to the epiphany target is performed via the eHAL library.

For documentation on this library, see chapter 14 of this book, “Epiphany Host Library (eHAL)”.

56 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

9. Debugger (E-GDB)

9.1 Overview

The Epiphany debugger (e-gdb) is based on the popular GNU GDB debugger. It allows the

programmer to see what is going on inside a program while it executes. Some of the powerful

debug features enabled by the debugger include:

 Interactive program load

 Stopping program on specific conditions (usually a breakpoint placed in source code)

 Examine complete state of machine and program once program has stopped.

 Continuing program one instruction at a time or until the next stop condition is met.

The Epiphany debugger supports program debugging using the functional simulator as a target or

the hardware platform as a target using the ‘e-server’. The only difference between the two

modes of debugging is the argument specified with the ‘target’ command within the debugger

client. The simulator only supports debugging programs running on a single Epiphany CPU core

and is not multi-core aware.

Note: In order to enable program debugging, the compiler should be invoked with the –g option.

57 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

9.2 Simple Examples

The following example shows how to debug a simple “Hello World” program with the Epiphany

instruction set simulator.

In a Linux shell, start an e-gdb session using your executable.

$ e-gdb hello_world.elf

Inside e-gdb, connect to the instruction set simulator debugging target.

(gdb) target sim

Load the program to the core memory.

(gdb) load

Place a breakpoint at the main function entry point.

(gdb) b main

Run the functional simulator.

(gdb) run

Continue program execution from breakpoint.

(gdb) c

Program then runs until completion and displays.

“Hello World!”

Exit debugger

(gdb) q

58 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

The following example shows how to debug a program running on an Epiphany based hardware

target.

Make sure that a connection has been established with the hardware using the e-server program:

$ e-server –hdf ${EPIPHANY_HOME}/bsps/emek3/emek3.xml -test-memory

In a Linux shell, start a e-gdb session using your executable (same as for the simulator).

$ e-gdb hello_world.elf

Inside e-gdb, connect to the TCP/IP socket connected to core that you want to debug.

(gdb) target remote:51000

Load the program the core memory.

(gdb) load

Place a breakpoint at the main function entry point.

(gdb) b main

Continue program execution from breakpoint.

(gdb) c

Program then runs until completion and displays.

“Hello World!”

Exit debugger

(gdb) q

59 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

9.3 Command Line Options

Invoke the debugger by running the program ‘e-gdb’. Once started, ‘e-gdb’ reads commands

from the terminal until you tell it to exit. You can also run ‘e-gdb’ with a variety of arguments

and options, to specify more of your debugging environment at the outset.

The most common way to start ‘e-gdb’ is to simply specify the program as the only argument:

$ e-gdb program.elf

Table ‎9.1: Debugger Command Line Options

Option Function

-x file Execute gdb commands from file file.

-d directory Add directory to the path to search for source files.

-quiet | q

-silent

“Quiet”. Do not print the introductory and copyright messages.

-batch Run in batch mode. Exit with status 0 after processing all the command

files specified with ‘-x’ (and all commands from initialization files, if not

inhibited with ‘-n’). Exit with nonzero status if an error occurs in executing

the gdb commands in the command files.

-nowindows

-nw

“No windows”.

-windows

-w

If gdb includes a GUI, then this option requires it to be used if possible.

-async Use the asynchronous event loop for the command-line interface. gdb

processes all events, such as user keyboard input, via a special event loop.

-version This option causes gdb to print its version number and exit

9.4 Quitting GDB

To quit ‘e-gdb’, enter ‘q’ or ‘quit’ at the ‘e-gdb’ command line. An interrupt (often Ctrl-C) does

not exit from ‘e-gdb’, but rather terminates the action of any ‘e-gdb’ command that is in progress

and returns to the ‘e-gdb’ command level.

60 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

9.5 Shell I/O

If you need to execute occasional shell commands during your debugging session, there is no

need to leave or suspend e-gdb. You can just use the shell command:

shell command string

You may want to save the output of e-gdb commands to a file. There are several commands

To control e-gdb’s logging, use:

set logging [on/off]

To control name of current logfile:

set logging file

To overwrite existing logfile instead of appending:

set logging overwrite [on|off]

To specify that log should only go to file:

set logging redirect [on|off]

9.6 Getting Help

You can use help (abbreviated h) with no arguments to display a short list of named classes of

Commands.

9.7 Command Syntax

An e-gdb command is a single line of input. There is no limit on how long it can be. It starts with

a command name, which is followed by arguments whose meaning depends on the command

name. Any text from “#” to the end of the line is a comment, which can be useful in command

files.

61 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

9.8 Command Summary

Table ‎9.2: Debugger Commands

Command Function

info Give information about specific keyword

breakpoint Sets a breakpoint.

break function Sets a breakpoint at entry to function

break -offset break +offset Sets a breakpoint some lines forward or back from position

break linenum Set a breakpoint at line linenum in the current source file. The

current source file is the last file whose source text was printed.

break filename:linenum Set a breakpoint at line linenum in source file filename.

break filename:function Set a breakpoint at line linenum in source file filename.

break *address Set a breakpoint at address address.

break When called without any arguments, break sets a breakpoint at

the next instruction to be executed in the selected stack frame

info breakpoints [n]

info break [n]

info watchpoints [n]

Print a table of all breakpoints, watchpoints, and catchpoints set

and not deleted, with the following columns for each breakpoint:

watch expr Set a watchpoint for an expression.

clear Delete any breakpoints at the next instruction to be executed in

the selected stack frame

clear function

clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum

clear filename:linenum

Delete any breakpoints set at or within the code of the specified

line.

delete [breakpoints]

[range...]

Delete the breakpoints, watchpoints, or catchpoints of the

breakpoint ranges specified as arguments. If no argument is

specified, delete all breakpoints

disable [breakpoints]

[range...]

Disable the specified breakpoints—or all breakpoints, if none are

listed. A disabled breakpoint has no effect but is not forgotten.

enable [breakpoints]

[range...]

Enable the specified breakpoints (or all defined breakpoints).

They become effective once again in stopping your program.

continue [ignore-count]

c [ignore-count]

fg [ignore-count]

Resume program execution, at the address where your program

last stopped; any breakpoints set at that address are bypassed. The

optional argument ignore-count allows you to specify a further

number of times to ignore a breakpoint at this location; its effect

is like that of ignore

step Continue running your program until control reaches a different

source line, then stop it and return control to gdb. Warning: If

you use the step command while control is within a function that

was compiled without debugging information, execution proceeds

until control reaches a function that does have debugging

information. Likewise, It will not step into a function which is

compiled without debugging information. To step through

functions without debugging information, use the stepi command,

described below

step count Continue running as in step, but do so count times.

62 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

next [count] Continue to the next source line in the current (innermost) stack

frame. This is similar to step, but function calls that appear within

the line of code are executed without stopping.

set step-mode on The set step-mode on command causes the step command to stop

at the first instruction of a function which contains no debug line

information rather than stepping over it.

set step-mode off Causes the step command to step over any functions which

contains no debug information. This is the default.

finish Continue running until just after function in the selected stack

frame returns.

until Continue running until a source line past the current line, in the

current stack frame, is reached. This command is used to avoid

single stepping through a loop more than once.

stepi

stepi arg

si

Execute one machine instruction, then stop and return to the

debugger.

nexti

nexti arg

ni

Execute one machine instruction, but if it is a function call,

proceed until the function returns.

handle signal keywords The keywords allowed by the handle command can be

abbreviated. Their full names are:

nostop gdb should not stop your program when this signal

happens. It may still print a message telling you that the signal

has come in.

stop gdb should stop your program when this signal happens.

This implies the print keyword as well. print gdb should print a

message when this signal happens. noprint gdb should not

mention the occurrence of the signal at all. This implies the

nostop keyword as well. Pass noignore gdb should allow your

program to see this signal; your program can handle the signal, or

else it may terminate if the signal is fatal and not handled. pass

and noignore are synonyms. Nopass ignore gdb should not allow

your program to see this signal. nopass and ignore are synonyms.

b

backtrace

Print a backtrace of the entire stack: one line per frame for all

frames in the stack.

backtrace n

bt n

Similar, but print only the innermost n frames.

frame n

f n

Select frame number n. Recall that frame zero is the innermost

(currently executing) frame, frame one is the frame that called the

innermost one, and so on. The highest-numbered frame is the one

for main.

list linenum Print lines centered around line number linenum in the current

source file.

set listsize count Make the list command display count source lines

list first,last Print lines from first to last.

disassemble

disassemble /m

disassemble /r

This specialized command dumps a range of memory as machine

instructions. It can also print mixed source + disassembly by

specifying the /m modifier and print the raw instructions in hex as

63 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

well as in symbolic form by specifying the /r. The default

memory range is the function surrounding the program counter of

the selected frame.

print expr

print /f expr

expr is an expression (in the source language). By default the

value of expr is printed in a format appropriate to its data type;

x/nfu addr

x addr

x

Use the x command to examine memory. n, f, and u are all

optional parameters that specify how much memory to display

and how to format it; addr is an expression giving the address

where you want to start displaying memory. If you use defaults

for nfu, you need not type the slash ‘/’. For example, ‘x/3uh

0x54320’ is a request to display three halfwords (h) of memory,

formatted as unsigned decimal integers (‘u’), starting at address

0x54320. All the defaults for the arguments to x are designed to

make it easy to continue scanning memory with minimal

specifications each time you use x. For example, after you have

inspected three machine instructions with ‘x/3i addr’, you can

inspect the next seven with just ‘x/7’.

compare-sections

[section-name]

Compare the data of a loadable section section-name in the

executable file of the program being debugged with the same

section in the remote machine’s memory, and report any

mismatches.

display expr Add the expression expr to the list of expressions to display each

time your program stops.

$_ The variable $_ is automatically set by the x command to the last

address examined

info all-registers Print the names and values of all registers including floating-point

and vector registers (in the selected stack frame).

info registers regname ... Print the relativized value of each specified register regname.

There are four standard registers in GDB: pc,sp,fp,ps(status).

Whenever possible, these four standard register names are

available on your machine even though the machine has different

canonical mnemonics, so long as there is no conflict.

info mem Print a table of all defined memory regions, with the following

columns for each region:

find [/sn] start_addr, +len,

val1 [, val2, ...]

find [/sn] start_addr,

end_addr, val1 [, val2, ...]

Search memory for the sequence of bytes specified by val1, val2,

etc. The search begins at address start addr and continues for

either len bytes or through to end addr inclusive.

set var symb=lvalue Setting a symbol value from GDB

jump linespec

jump location

Resume execution at line linespec or at address given by location.

Execution stops again immediately if there is a breakpoint there.

target remote host:port

target remote tcp:host:port

Debug using a TCP connection to port on host. The host may be

either a host name or a numeric ip address; port must be a

decimal number. The host could be the target machine itself, if it

is directly connected to the net, or it might be a terminal server

which in turn has a serial line to the target.

target sim Builtin Epiphany CPU simulator.

64 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

set debug monitor Enable or disable display of communications messages between

the debugger and the remote monitor.

detach When you have finished debugging the remote program, you can

use the detach command to release it from debugger control.

disconnect The disconnect command behaves like detach, except that the

target is generally not resumed.

9.9 Epiphany GDB Limitations

The Epiphany implementation of GDB currently lacks support for:

1. Tracing

2. Hardware assisted watchpoints

65 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

10. Epiphany SDK Utilities (E-UTILS)

10.1 Overview

The Epiphany SDK is provided with a group of command-line utility programs. These programs

are used to perform Epiphany system related tasks during program development and debugging.

The e-utils programs include:

e-reset

e-loader

e-read

e-write

e-hw-rev

10.2 Reset Utility (E-RESET)

The Epiphany reset utility (e-reset) is used to reset the Epiphany subsystem, in case it gets stuck

due to some unstable situation, or in order to bring it to a known state.

10.2.1 Example

At the command prompt, type:

$ e-reset

10.3 Loader Utility (E-LOADER)

The Epiphany loader (e-loader) is responsible for loading programs onto the hardware platform.

The input to the loader is a compiled and linked Epiphany program, that was generated by

e-gcc/e-ld. Currently, the loader supports binary images formatted as a text file with a standard

S-record (known as SREC) file format. This format is an ASCII hexadecimal ("hex") text

encoding for binary data. The S-record is an output of the binary utility ‘e-objcopy’.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Binary-to-text_encoding
http://en.wikipedia.org/wiki/Binary-to-text_encoding

66 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

When loading a binary image on the chip there is a need to translate the internal core addresses

to global space addresses. During compile time, the build tools do not know what core will be

the target of the executable. This information is known only at load time. Thus, the insertion of

the core ID data has to be done prior to sending the SREC file to the e-loader. When loading

images of more than one core, each partial SREC has to be pre-processed separately.

10.3.1 Command Line Options

e-loader [-s|--start] [-r|--reset] <e-program> [row col [rows cols]]

Table ‎10.1: Loader Command Line Options

Option Function

-r, --reset Perform a full hardware reset of the Epiphany platform before

loading the program.

-s, --start

With this option set, the loaded programs are started after they

have finished loading on all cores in workgroup.

<e-program> Path to the program image to load onto the core workgroup.

row, col Absolute coordinates of first core in workgroup to be loaded. The

default values are the platform’s first physical core.

rows, cols Size of cores workgroup to be loaded. The default values are (1,1)

-h, --help Display a help message.

10.3.2 Example

After building an Epiphany elf program, translate from elf to S-record program load format:

$ e-objcopy --srec-forceS3 --output-target srec main1.elf main1.srec

Load program onto the target, on a 44 block of cores starting at core 0x808 (32,8) and start it

immediately after:

$ e-loader --start main.srec 32 8 4 4

67 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Or, perform a system reset and load the program onto a single core at the chip’s origin. Then

wait for host command to start the program.

$ e-loader --reset main.srec

10.4 Memory Read Utility (E-READ)

The Epiphany memory read utility (e-read) is used to read words from memory locations on the

Epiphany chip(s) or the External Memory.

10.4.1 Command Line Options

e-read [-v|-r] <row> [<col>] <address> [<num-words>]

Table ‎10.2: e-read Command Line Options

Option Function

<row> Row coordinate of the target core. To read data from External

Memory, enter -1.

The core coordinates are relative to the platform’s chip bounding

box. That is, all of the Epiphany chips are considered one

workgroup, where the first core of the first chip is at coordinates

(0,0).

[<col>] Row coordinate of the target core. When reading from External

Memory, this parameter is omitted.

<address> The start address of the read data. Address is given as local space

when reading from a core memory, or as an offset from the

platform’s External Memory base. Address should be in

hexadecimal format and is rounded down to the word (4-bytes)

alignment.

[<num-words>] Number of words to read from the target, starting at <address>. If

this parameter is omitted, a single word is read.

[-v] Verbose mode - print more information.

[-r] Raw mode - print only the memory contents.

68 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

10.4.2 Example

The following command will read the STATUS register of the 3
rd

 core in the 1
st
 row (0,2):

$ e-read 0 2 0xf0404

The following command will read 16 words from the External Memory, starting at offset

0x4000:

$ e-read -1 0x4000 16

10.5 Memory Write Utility (E-WRITE)

The Epiphany memory write utility (e-write) is used to write words to memory locations on the

Epiphany chip(s) or the External Memory.

10.5.1 Command Line Options

e-write [-v] <row> [<col>] <address> [<val0> <val1> ...]

Table ‎10.3: e-write Command Line Options

Option Function

<row> Row coordinate of the target core. To read data from External

Memory, enter -1.

The core coordinates are relative to the platform’s chip bounding

box. That is, all of the Epiphany chips are considered one

workgroup, where the first core of the first chip is at coordinates

(0,0).

[<col>] Row coordinate of the target core. When reading from External

Memory, this parameter is omitted.

<address> The start address of the read data. Address is given as local space

when reading from a core memory, or as an offset from the

platform’s External Memory base. Address should be in

hexadecimal format and is rounded down to the word (4-bytes)

alignment.

[<val0> <val1> …] Number of words to write to the target, starting at <address>. If

69 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

this parameter is omitted, the input is taken in interactive mode

from the standard input, one word at a time, until an empty line is

entered. Values are entered as 32-bit hexadecimal numbers.

[-v] Verbose mode - print more information.

10.5.2 Example

The following command will program the CONFIG register of the 3
rd

 core in the 1
st
 row (0,2)

such that the core works in the “truncate” rounding mode:

$ e-write 0 2 0xf0400 0x1

The following command will write the first eight elements of the Fibonacci Series to a buffer in

the External Memory, starting at offset 0x120:

$ e-write -1 0x120 1 1 2 3 5 8 d 15

10.6 Hardware Revision Utility (E-HW-REV)

The hardware revision utility (e-hw-rev) returns the current revision number of the Epiphany

subsystem programmed logic.

10.6.1 Example

At the command prompt, type:

$ e-hw-rev

70 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

11. Standard Library Support

11.1 Overview

The Epiphany SDK includes a set of libraries based on the newlib distribution of Standard C and

Standard Math libraries. These libraries are bundled with the e-gcc compiler. Usage of these

libraries does not require the use of the –L switch for specifying library location search path.

11.2 Standard C Libraries

Table 11.1 shows the key components within the Standard C library, with complete support for

file I/O. For a complete explanation of the C functions, please refer to the newlib manual at:

http://sourceware.org/newlib/libc.html

Table ‎11.1: Key Standard C Library Components

Library Function

<stdlib.h> Standard utility functions

<ctype.h> Character classification macros

<stdio.h> Input/output functions

<strings.h> String handling functions

<signals.h> Event handling

The Standard C Library functions are reentrant whenever possible.

http://sourceware.org/newlib/libc.html

71 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

11.3 Standard Math Library (math.h)

The Standard Math library is based on the newlib math library (libm). The complete newlib math

library reference manual can be located at: http://sourceware.org/newlib/libm.html

Alternative declarations of the mathematical functions, which exploit specific machine

capabilities to operate faster—but generally have less error checking and may reflect additional

limitations on some machines—are available when you include fastmath.h instead of math.h.

When a libm function detects an exceptional case, errno may be set, the matherr() function

may be called, and an error message may be written to the standard error stream. This behavior

may not be reentrant.

http://sourceware.org/newlib/libm.html

72 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

12. Epiphany System Programming Model

When programming an application for the Epiphany system, a few parallel programming models

are applicable. The Epiphany Run-Time library and Host library are designed to support

programming in the relocateable core workgroup model.

The Epiphany platform is comprised of the Epiphany chip arrangement and External Memory.

Individual eCores are referenced in a context of Workgroups. External Memory regions are

addressed relative to the External Memory region base. The physical allocation of the Epiphany

chips and External Memory are defined in the provided Hardware Description File (HDF). This

way, an application can be easily migrated between platforms where the location of physical

chips and External Memory differ.

A Workgroup is a collection of adjacent eCores on the Epiphany chip(s), normally intended for

the parallel execution of a computational task. The workgroup is rectangular and its size and

origin are defined at run-time by the host. Its parameters are set by a host library function and are

maintained in a workgroup object.

The collection of chips in the Epiphany system form a rectangular area, which is the minimal

bounding box including all the physical chips in the platform. A workgroup is defined in terms

of its row and column coordinates relative to this bounding box, and its size in terms of number

of rows and columns of cores. Thus, the first core of the first chip is defined as located at

coordinates (0, 0). For example, consider a system comprised of 4 Epiphany-16 (E16) chips

arranged in two rows containing two chips each. A workgroup of size 2 by 2 cores, originating at

the 4
th

 row and 6
th

 column will have the following parameters: (row, col, rows, cols) =

(3, 5, 2, 2).

An eCore member of the workgroup is referenced in terms of its row and column coordinates

relative to the workgroup’s origin. Thus, the first core in the workgroup is at coordinates (0, 0).

An example of coordinates and references designation can be seen in Figure 12.1.

73 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Figure ‎12.1: Platform, Workgroup and eCore coordinates

Here the platform is comprised of two adjacent E16 chips, one is located at coordinates (32, 8)

and the other at (32, 12). The Platform’s total size is 4 by 8 cores. A Workgroup of size 2 by 3 is

defined starting at core (34, 9). Hence, its relative position is (2, 1). The 3
rd

 eCore on the

workgroup’s 1
st
 row has CoreID 0x88b, which is at absolute coordinates (34, 11). Hence, its

relative coordinates are (0, 2).

808 - CoreID
(32,8) - System
 Origin
(4,8) - System
 Size

809 80a 80b807

7c8 7c9 7ca 7cb 7cc7c7

888 889
(2,1) - Workgroup
 Origin
(2,3) - Workgroup
 Size

88a887

848 849 84a 84b

80c

84c

88c

847

8c8 8c9 8ca 8cb 8cc8c7

907 908 909 90a 90b 90c

88b
(0,2) - eCore
 Coordinates
 in Workgroup

Epiphany E16 Chip

Workgroup

Epiphany Space

eCore

Adjacent E16∙∙∙

74 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13. Epiphany Hardware Utility Library (eLib)

13.1 Overview

The Epiphany Hardware Utility library provides functions for configuring and querying the

Epiphany hardware resources. These routines automate many common programming tasks that

are not provided by the C and C++ languages and are specific to the Epiphany architecture.

In the following sections, the various eLib functions are described. Each section provides details

on a family of APIs. The master header file for the eLib, which includes all the per-family

headers, is the “e-lib.h” header file. Include this header file at the beginning of a program that

uses the eLib functions and objects.

#include “e-lib.h”

In order to use this library to build an Epiphany program, use the e-gcc compiler

option -le-lib on the build command line.

Each core on the platform is referenced via a definition of a workgroup. Two global objects are

available at each core’s space. One object, called e_group_config, contains the information

about the chip type, the workgroup’s position and size, and the core’s position in the containing

workgroup. Its members are:

e_group_config.chiptype - Type of chip containing the core

e_group_config.group_id - CoreID of first core in Workgroup

e_group_config.group_row - Origin of Workgroup

e_group_config.group_col

e_group_config.group_rows - Size of Workgroup

e_group_config.group_cols

e_group_config.core_row - Coordinates of core

e_group_config.core_col

The other object, called e_emem_config, contains information about the External Memory base

address. Its member is:

e_emem_config.base - Absolute address of base of ext. mem.

75 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

In addition to the function prototypes and specific type enumerations, the following definitions

are provided: Two macro shortcuts for the “align”, “packed” and “section” function and

variable attributes are defined as:

#define ALIGN(x) __attribute__ ((aligned (x)))

#define PACKED __attribute__ ((packed))

#define SECTION(x) __attribute__ ((section (x)))

The e_bool_t type is defined as follows:

typedef enum {

 E_FALSE,

 E_TRUE,

} e_bool_t;

The e_return_stat_t type defined the eLib functions return values:

typedef enum {

 E_OK,

 E_ERR,

 E_WARN,

} e_return_stat_t;

76 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.2 System Register Access Functions

13.2.1 Overview

The system register access functions enable the reading from and writing to the hardware special

registers.

Functions definition summary

unsigned e_reg_read(e_reg_id_t reg_id);

void e_reg_write(e_reg_id_t reg_id, unsigned val);

Enumerated constants and macros

// General Purpose Registers

typedef enum

{

 E_REG_R0, E_REG_R8, E_REG_R16, E_REG_R24,

 E_REG_R1, E_REG_R9, E_REG_R17, E_REG_R25,

 E_REG_R2, E_REG_R10, E_REG_R18, E_REG_R26,

 E_REG_R3, E_REG_R11, E_REG_R19, E_REG_R27,

 E_REG_R4, E_REG_R12, E_REG_R20, E_REG_R28,

 E_REG_R5, E_REG_R13, E_REG_R21, E_REG_R29,

 E_REG_R6, E_REG_R14, E_REG_R22, E_REG_R30,

 E_REG_R7, E_REG_R15, E_REG_R23, E_REG_R31,

 E_REG_R32, E_REG_R40, E_REG_R48, E_REG_R56,

 E_REG_R33, E_REG_R41, E_REG_R49, E_REG_R57,

 E_REG_R34, E_REG_R42, E_REG_R50, E_REG_R58,

 E_REG_R35, E_REG_R43, E_REG_R51, E_REG_R59,

 E_REG_R36, E_REG_R44, E_REG_R52, E_REG_R60,

 E_REG_R37, E_REG_R45, E_REG_R53, E_REG_R61,

 E_REG_R38, E_REG_R46, E_REG_R54, E_REG_R62,

 E_REG_R39, E_REG_R47, E_REG_R55, E_REG_R63,

} e_gp_reg_id_t;

// eCore Special Registers

typedef enum

{

 // Control Registers

 E_REG_CONFIG, E_REG_IRET,

 E_REG_STATUS, E_REG_IMASK,

 E_REG_FSTATUS, E_REG_ILAT,

 E_REG_PC, E_REG_ILATST,

 E_REG_DEBUGSTATUS, E_REG_ILATCL,

 E_REG_DEBUGCMD, E_REG_IPEND,

77 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

 E_REG_LC,

 E_REG_LS,

 E_REG_LE,

 // DMA registers

 E_REG_DMA0CONFIG, E_REG_DMA1CONFIG,

 E_REG_DMA0STRIDE, E_REG_DMA1STRIDE,

 E_REG_DMA0COUNT, E_REG_DMA1COUNT,

 E_REG_DMA0SRCADDR, E_REG_DMA1SRCADDR,

 E_REG_DMA0DSTADDR, E_REG_DMA1DSTADDR,

 E_REG_DMA0AUTODMA0, E_REG_DMA1AUTODMA0,

 E_REG_DMA0AUTODMA1, E_REG_DMA1AUTODMA1,

 E_REG_DMA0STATUS, E_REG_DMA1STATUS,

 // Event Timer Registers

 E_REG_CTIMER0, E_REG_CTIMER1,

 // Processor Control Registers

 E_REG_MEMPROTECT,

 E_REG_MESHCFG,

 E_REG_COREID,

 E_REG_CORE_RESET,

} e_core_reg_id_t;

// Chip Registers

typedef enum

{

 E_REG_IO_LINK_MODE_CFG,

 E_REG_IO_LINK_TX_CFG,

 E_REG_IO_LINK_RX_CFG,

 E_REG_IO_LINK_DEBUG,

 E_REG_IO_GPIO_CFG,

 E_REG_IO_FLAG_CFG,

 E_REG_IO_SYNC_CFG,

 E_REG_IO_HALT_CFG,

 E_REG_IO_RESET,

} e_chip_reg_id_t;

78 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.2.2 e_reg_read()

Synopsis

#include “e-lib.h”

unsigned e_reg_read(e_core_reg_id_t reg_id);

Description

Reads value from one of the system registers within the caller core.

Return value

Return the current value read from one of the system registers as identified by reg_id.

79 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.2.3 e_reg_write()

Synopsis

#include “e-lib.h”

void e_reg_write(e_core_reg_id_t reg_id, unsigned val);

Description

Set the value of the system register identified by reg_id within the caller core, to val.

Return value

None.

80 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.3 Interrupt Service Functions

13.3.1 Overview

The Interrupt Service functions handle system interrupt control and generation. It is possible to

generate interrupts in the local core or in a remote core.

Functions definition summary

void e_irq_attach(e_irq_type_t irq, sighandler_t handler);

void e_irq_global_mask(e_bool_t state);

void e_irq_mask(e_irq_type_t irq, e_bool_t state);

void e_irq_set(unsigned row, unsigned col, e_irq_type_t irq);

void e_irq_clear(unsigned row, unsigned col, e_irq_type_t irq);

Enumerated constants, macros and types

typedef void (*sighandler_t)(int);

typedef enum

{

 E_SYNC,

 E_SW_EXCEPTION,

 E_MEM_FAULT,

 E_TIMER0_INT,

 E_TIMER1_INT,

 E_MESSAGE_INT,

 E_DMA0_INT,

 E_DMA1_INT,

 E_USER_INT,

} e_irq_type_t

81 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.3.2 e_irq_attach()

Synopsis

#include “e-lib.h”

void e_irq_attach(e_irq_type_t irq, sighandler_t handler);

Description

This function attaches (registers) an interrupt handler function (ISR), given by handler, to a

specific entry in the IVT (Interrupt Vector Table), specified by irq.

Using this function, ISR for a specific event type can be assigned and replaced in run-time. It

uses an indirect handler attachment, which may impose a slight delay on the execution of the

handler in case of an event.

The ISR should be compiled using the interrupt function attribute in order to apply proper

entry and exit sequences, guaranteeing safe context switching.

Note that the sighandler_t ISR prototype contains an integer argument. Generally, this

argument is intended for passing the interrupt type (irq parameter) to the handler, enabling the

sharing of the same handler among several interrupt types, and identifylng the specific

generating event during the ISR processing. For example, it allows sharing the handler for

DMA0 and DMA1, taking proper action depending on the specific generating DMA. However,

when attaching an ISR to the interrupt using the e_irq_attach() function, this parameter is

not populated upon interrupt invocation. If this parameter is required, use the signal()

mechanism instead.

Return value

None.

82 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.3.3 e_irq_global_mask()

Synopsis

#include “e-lib.h”

void e_irq_global_mask(e_bool_t state);

Description

Globally enable or disable interrupts on caller core. When state is E_TRUE, the GID bit of the

core’s STATUS register is set and consequent interrupt events are masked. When state is

E_FALSE, the GID bit is cleared and consequent interrupt events are tested against the other

masking mechanisms and pending interrupts.

Return value

None.

83 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.3.4 e_irq_mask()

Synopsis

#include “e-lib.h”

void e_irq_mask(e_irq_type_t irq, e_bool_t state);

Description

Disable or enables a single interrupt event type, specified by irq, by setting its respective bit in

the core’s IMASK register according to state. If state is E_TRUE, then consequent interrupt

events of type irq are masked. If state is E_FALSE, this interrupt type is not masked.

Return value

None.

84 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.3.5 e_irq_set()

Synopsis

#include “e-lib.h”

void e_irq_set(unsigned row, unsigned col, e_irq_type_t irq);

Description

Generate an interrupt event by setting its ILAT register bit specified by irq. The event is

generated on the core with relative coordinates (row, col) in a core workgroup.

Return value

None.

85 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.3.6 e_irq_clear()

Synopsis

#include “e-lib.h”

void e_irq_clear(unsigned row, unsigned col, e_irq_type_t irq);

Description

Clears pending interrupt request by clearing its ILAT register bit specified by irq. The request is

cleared from the core with relative coordinates (row, col) in a core workgroup.

Return value

None.

86 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.4 Timer Functions

13.4.1 Overview

The Timer functions interface the system timers (two per core) and the read, write and

manipulation of their operation.

Functions definition summary

unsigned e_ctimer_get(e_ctimer_id_t timerid);

unsigned e_ctimer_set(e_ctimer_id_t timerid, unsigned val);

unsigned e_ctimer_start(e_ctimer_id_t timerid,

 e_ctimer_config_t config);

unsigned e_ctimer_stop(e_ctimer_id_t timerid);

void e_wait(e_ctimer_id_t timerid, unsigned clicks);

Enumerated constants and macros

typedef enum

{

 E_CTIMER_0,

 E_CTIMER_1,

} e_ctimer_id_t;

typedef enum

{

 E_CTIMER_OFF,

 E_CTIMER_CLK,

 E_CTIMER_IDLE,

 E_CTIMER_IALU_INST,

 E_CTIMER_FPU_INST,

 E_CTIMER_DUAL_INST,

 E_CTIMER_E1_STALLS,

 E_CTIMER_RA_STALLS,

 E_CTIMER_EXT_FETCH_STALLS,

 E_CTIMER_EXT_LOAD_STALLS,

} e_ctimer_config_t;

#define E_CTIMER_MAX

87 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.4.2 e_ctimer_get()

Synopsis

#include “e-lib.h”

unsigned e_ctimer_get(e_ctimer_id_t timerid);

Description

Read value of the core’s timer specified by timerid. Note that the core counters decrement on

events and stop counting at zero.

Return value

Returns the current value of timer timerid.

88 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.4.3 e_ctimer_set()

Synopsis

#include “e-lib.h”

unsigned e_ctimer_set(e_ctimer_id_t timerid, unsigned val);

Description

Sets value of the core’s timer specified by timerid to val. Note that the core counters

decrement on events and stop counting at zero. Use E_CTIMER_MAX to set val to the maximum

allowed value.

and the initial value of the ctimer count register to val. Note that the core counters decrement on

events and stop counting at zero.

Return value

Returns the new value of timer timerid.

89 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.4.4 e_ctimer_start()

Synopsis

#include “e-lib.h”

unsigned e_ctimer_start(e_ctimer_id_t timerid,

 e_ctimer_config_t config);

Description

Causes the ctimer specified by timerid to begin counting down upon events. The type of

events to be counted is specified by config. The function sets the ctimer configuration field

CTIMERxCFG in the core’s CONFIG register to config.

Return value

Returns the current value of timer timerid.

90 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.4.5 e_ctimer_stop()

Synopsis

#include “e-lib.h”

unsigned e_ctimer_stop(unsigned timerid);

Description

Causes the ctimer specified with timerid to stop counting down by setting the ctimer

configuration field CTIMERxCFG in the core’s CONFIG register to E_CTIMER_OFF.

Return value

Returns the current value of the stopped timer.

91 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

92 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.4.6 e_wait()

Synopsis

#include “e-lib.h”

void e_wait(e_ctimer_id_t timerid, unsigned clicks);

Description

Pauses the execution of the program for the number of clock cycles specified by clicks.

This function utilizes ctimer timerid for counting the clocks. Consequently, it will override

whatever counting process is currently being performed by ctimer timerid. Make sure to store

the old value before calling e_wait() if required later.

Note that as this function counts clock cycles, the actual time (wall-clock) depends on the clock

rate of the Epiphany chip.

Return value

None.

93 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5 DMA and Data Movement Functions

13.5.1 Overview

The DMA functions control the two DMA channels included in each core. Functionality is

provided for querying status, configuring and copying memory using the DMA engine.

Functions definition summary

void *e_read(void *remote, void *dst, unsigned row, unsigned col,

 const void *src, size_t bytes);

void *e_write(void *remote, const void *src, unsigned row,

 unsigned col, void *dst, size_t bytes);

int e_dma_copy(void *dst, void *src, size_t bytes);

int e_dma_start(e_dma_desc_t *descriptor, e_dma_id_t chan);

int e_dma_busy(e_dma_id_t chan);

void e_dma_wait(e_dma_id_t chan);

void e_dma_set_desc(e_dma_id_t chan,

 unsigned config, e_dma_desc_t *next_desc,

 unsigned stride_i_src, unsigned stride_i_dst,

 unsigned count_i, unsigned count_o,

 unsigned stride_o_src, unsigned stride_o_dst,

 void *addr_src, void *addr_dst, e_dma_desc_t *descriptor);

Enumerated constants, macros and types

typedef enum

{

 E_DMA_0,

 E_DMA_1

} e_dma_id_t;

typedef struct

{

 unsigned config;

 unsigned inner_stride;

 unsigned count;

 unsigned outer_stride;

 void *src_addr;

 void *dst_addr;

} e_dma_desc_t;

typedef enum

{

 E_DMA_ENABLE,

94 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

 E_DMA_MASTER,

 E_DMA_CHAIN,

 E_DMA_STARTUP,

 E_DMA_IRQEN,

 E_DMA_BYTE,

 E_DMA_HWORD,

 E_DMA_WORD,

 E_DMA_DWORD,

 E_DMA_MSGMODE,

 E_DMA_SHIFT_SRC_IN,

 E_DMA_SHIFT_DST_IN,

 E_DMA_SHIFT_SRC_OUT,

 E_DMA_SHIFT_DST_OUT,

} e_dma_config_t;

95 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.2 e_read()

Synopsis

#include “e-lib.h”

void *e_read(void *remote, void *dst, unsigned row, unsigned col,

 const void *src, size_t bytes);

Description

Copy bytes bytes of data from a remote source src to a local destination dst. The remote

source can be either a core on the caller core’s workgroup, or an External Memory buffer. The

remote parameter must be either e_group_config or e_emem_config, specifying the nature

if the source.

If the remote parameter is e_group_config, then the source core is specified by its

(row, col) coordinates in the caller core’s workgroup. If the src address is a global address,

then it is used unmodified.

If the remote parameter is e_emem_config, then the source address is given relative to the

External Memory base address. In this case, the row and col parameters are ignored.

Return value

None.

96 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.3 e_write()

Synopsis

#include “e-lib.h”

void *e_write(void *remote, const void *src, unsigned row,

 unsigned col, void *dst, size_t bytes);

Description

Copy bytes bytes of data from a local source src to a remote destination dst. The remote

destination can be either a core on the caller core’s workgroup, or an External Memory buffer.

The remote parameter must be either e_group_config or e_emem_config, specifying the

nature if the destination.

If the remote parameter is e_group_config, then the destination core is specified by its

(row, col) coordinates in the caller core’s workgroup. If the dst address is a global address,

then it is used unmodified.

If the remote parameter is e_emem_config, then the destination address is given relative to the

External Memory base address. In this case, the row and col parameters are ignored.

Return value

None.

97 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.4 e_dma_copy()

Synopsis

#include “e-lib.h”

int e_dma_copy(void *dst, void *src, size_t bytes);

Description

Copy bytes bytes of data from src to dst using the DMA engine DMA1. If the DMA channel is

busy when calling this function, it waits until the previous transfer is concluded. After initiating

the DMA transfer process it waits until the transfer is finished (blocking DMA).

This is generally a faster alternative to the standard memcpy() function. However, utilizing the

DMA, it has some limitations that the standard function does not impose, like some restrictions

on the source and destination addresses. Please consult the Epiphany Architecture Reference

Manual for more details.

Return value

Returns 0 if successful.

98 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.5 e_dma_start()

Synopsis

#include “e-lib.h”

int e_dma_start(e_dma_desc_t *descriptor, e_dma_id_t chan);

Description

Start a DMA on channel chan as described by the descriptor descriptor. Use the

e_dma_desc_t constants to populate the descriptor descriptor fields.

Return value

Returns 0 if successful.

99 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.6 e_dma_busy()

Synopsis

#include “e-lib.h”

int e_dma_busy(e_dma_id_t chan);

Description

Queries the status of the state machine of dma channel chan.

Return value

Return 0 if the DMA channel identified by chan is idle, otherwise return DMA channel status.

100 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.7 e_dma_wait()

Synopsis

#include “e-lib.h”

void e_dma_wait(e_dma_id_t chan);

Description

Halts the execution of the program and waits as long as DMA channel chan is busy.

Return value

None.

101 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.5.8 e_dma_set _desc()

Synopsis

#include “e-lib.h”

void e_ dma_set_desc(e_dma_id_t chan,

 unsigned config, e_dma_desc_t *next_desc,

 unsigned stride_i_src, unsigned stride_i_dst,

 unsigned count_i, unsigned count_o,

 unsigned stride_o_src, unsigned stride_o_dst,

 void *addr_src, void *addr_dst, e_dma_desc_t *descriptor);

Description

Sets the DMA descriptor descriptor of DMA channel chan with the various members:

config - 16-bit configuration field. This field is comprised of the Logical OR of the

e_dma_config_t constants.

next_desc - 16-bit address of DMA descriptor, loaded when current transfer ends, when

E_DMA_CHAIN mode was set.

stride_i_src - 16-bit stride of the inner loop of the source address generator.

stride_i_dst - 16-bit stride of the inner loop of the destination address generator.

count_i - 16-bit count of the inner loop transactions. This value must be positive.

count_o - 16-bit count of the outer loop transactions. This value must be positive.

stride_o_src - 16-bit stride of the outer loop of the source address generator.

stride_o_dst - 16-bit stride of the outer loop of the destination address generator.

addr_src - 32-bit start address of source data.

addr_dst - 32-bit start address of destination data.

Use this function to make sure that the DMA channel is idle when programming the descriptor.

Return value

None.

102 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6 Mutex and Barrier Functions

13.6.1 Overview

A mutex is an object which allows locking of a shared resource, enabling exclusive access to just

one agent. When an access to the shared resource is required, first the associated mutex is

checked. If the mutex is cleared, then resource is free. The mutex is then set and access is

granted to the querying agent.

A barrier is a means for synchronizing parallel executing threads. When a program reaches a

barrier, it will wait until all other threads reached the barrier as well. Only then will the program

(and all the other programs) continue their execution.

Functions definition summary

void e_mutex_init(unsigned row, unsigned col, e_mutex_t *mutex,

 e_mutexattr_t *attr);

void e_mutex_lock(unsigned row, unsigned col, e_mutex_t *mutex);

unsigned e_mutex_trylock(unsigned row, unsigned col,

 e_mutex_t *mutex);

void e_mutex_unlock(unsigned row, unsigned col, e_mutex_t *mutex);

void e_barrier_init(volatile e_barrier_t bar_array[],

 e_barrier_t *tgt_bar_array[]);

void e_barrier(volatile e_barrier_t *bar_array,

 e_barrier_t *tgt_bar_array[]);

Enumerated constants, macros and types

typedef int e_mutex_t;

typedef int e_mutexattr_t;

typedef char e_barrier_t;

103 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6.2 e_mutex_init()

Synopsis

#include “e-lib.h”

void e_mutex_init(unsigned row, unsigned col, e_mutex_t *mutex,

 e_mutexattr_t *attr);

Description

This function initializes the mutex referenced by mutex, on the core at coordinates (row, col)

in the caller core’s workgroup. Upon successful initialization, the state of the mutex becomes

initialized and unlocked.

The initialization attribute, specified by attr, is reserved for future use. When calling the

function, use NULL for attr.

Return value

Returns 0 upon successful initialization; otherwise, a nonzero error value is returned.

104 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6.3 e_mutex_lock()

Synopsis

#include “e-lib.h”

void e_mutex_lock(unsigned row, unsigned col, e_mutex_t *mutex);

Description

This function tries to lock the mutex object referenced by mutex, on the core at coordinates

(row, col) in the caller core’s workgroup. If the mutex is already locked, the calling thread will

be blocked until the mutex becomes available.

Return value

If successful, the function returns 0; otherwise, a nonzero error value is returned.

105 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6.4 e_mutex_trylock()

Synopsis

#include “e-lib.h”

unsigned e_mutex_trylock(unsigned row, unsigned col,

 e_mutex_t *mutex);

Description

This function tries to lock the mutex object referenced by mutex, on the core at coordinates

(row, col) in the caller core’s workgroup. If the mutex is already locked, the function returns

with a failure code.

Return value

If successful, the function returns 0; otherwise, nonzero value is returned, which is the Core ID

of the agent that holds the associated resource.

106 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6.5 e_mutex_unlock()

Synopsis

#include “e-lib.h”

void e_mutex_unlock(unsigned row, unsigned col, e_mutex_t *mutex);

Description

This function unlocks the mutex object referenced by mutex, on the core at coordinates

(row, col) in the caller core’s workgroup.

Return value

If successful, the function returns 0; otherwise, a nonzero error value is returned.

107 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6.6 e_barrier_init()

Synopsis

#include “e-lib.h”

void e_barrier_init(volatile e_barrier_t bar_array[],

 e_barrier_t *tgt_bar_array[]);

Description

Initialize a workgroup barrier. The bar_array and tgt_bar_array parameters are defined as

arrays of size equal to the number of cores in the workgroup. The barrier is mutual to all cores in

the workgroup, so care must be taken w

Return value

None.

108 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.6.7 e_barrier()

Synopsis

#include “e-lib.h”

void e_barrier(volatile e_barrier_t *bar_array,

 e_barrier_t *tgt_bar_array[]);

Description

Set a workgroup barrier point (a sync point) across the workgroup cores. When the program

reaches the barrier point, it will halt and wait until all cores in the workgroup reached that point

as well.

The bar_array and tgt_bar_array parameters are defined as arrays of size equal to the

number of cores in the workgroup, and must be initialized by e_barrier_init().

The barrier is mutual to all cores in the workgroup, so care must be taken when placing the

e_barrier() call, to prevent deadlock conditions.

Return value

None.

109 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7 Core ID and Workgroup Functions

13.7.1 Overview

The Core ID is a number which identifies a core in the system. Each core is associated with a

unique number that is related to the core’s coordinates in the global mesh. The ID is a 12-bit

number where the 6 high order bits are the core row coordinate and the 6 low order bits are the

core column coordinates. This number also indicates the core’s 1MB slice in the global memory

space, where it comprises the most significant bits of the core’s globally addressable space.

Functions definition summary

e_coreid_t e_get_coreid(void);

void *e_get_global_address(unsigned row, unsigned col,

 const void *ptr);

e_coreid_t e_coreid_from_coords(unsigned row, unsigned col);

void e_coords_from_coreid(e_coreid_t coreid, unsigned *row,

 unsigned *col);

e_bool_t e_is_on_core(const void *ptr);

void e_neighbor_id(e_coreid_wrap_t dir, e_coreid_wrap_t wrap,

 unsigned *row, unsigned *col);

Enumerated constants and macros

typedef unsigned int e_coreid_t;

#define E_SELF

typedef enum

{

 // neighboring cores wrap topology

 E_GROUP_WRAP, // all workgroup cores form a ring

 E_ROW_WRAP, // core rows form rings

 E_COL_WRAP, // core columns form rings

 // neighboring cores direction

 E_NEXT_CORE, // neighbor core with the next coreID

 E_PREV_CORE, // neighbor core with the prev coreID

} e_coreid_wrap_t

110 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

typedef enum {

 E_E16G301,

 E_E64G401,

} e_chiptype_t;

typedef struct {

 e_chiptype_t chiptype;

 e_coreid_t group_id;

 unsigned group_row;

 unsigned group_col;

 unsigned group_rows;

 unsigned group_cols;

 unsigned core_row;

 unsigned core_col;

 unsigned alignment_padding;

} e_group_config_t;

typedef struct {

 unsigned base;

} e_emem_config_t;

111 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.2 e_get_coreid()

Synopsis

#include “e-lib.h”

e_coreid_t e_get_coreid(void);

Description

Reads coreid from the hardware register.

Return value

Returns a 12-bit coreid value, aligned to lsb of the result.

112 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.3 e_get_global_address ()

Synopsis

#include “e-lib.h”

void *e_get_global_address(unsigned row, unsigned col,

 const void *ptr);

Description

Transforms a local pointer ptr into the matching address on a neighbor core, referred to by

coordinates (row, col), in the caller core’s workgroup.

Note that for ptr values that point to a global address not local to coreid, the function returns

an unmodified version of ptr.

If either row or col are E_SELF, or they are equal to the caller core’s own coordinates, then the

function calculates the global version of the local address. That is, the returned address is the

same address as would be referenced from outside of the core.

If ptr points to a global address (that is, its 12-bit msb’s are nonzero), then it is returned

unmodified.

Return value

Returns a 32-bit absolute global address.

113 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.4 e_coreid_from_coords()

Synopsis

#include “e-lib.h”

e_coreid_t e_coreid_from_coords(unsigned row, unsigned col);

Description

Returns the coreid value of the neighbor core, referred to by coordinates (row, col), in the

caller core’s workgroup.

Return value

Returns 12-bit wide coreid value.

114 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.5 e_coords_from_coreid()

Synopsis

#include “e-lib.h”

void e_coords_from_coreid(e_coreid_t coreid, unsigned *row,

 unsigned *col);

Description

Calculate the row and column coordinates (row, col) of the core specified by coreid, in the

caller’s workgroup.

Note that no check is made for a coreid value outside of the workgroup. In such case, the

return coordinates may be either bigger than the workgroup’s size or negative.

Return value

None.

115 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.6 e_is_oncore()

Synopsis

#include “e-lib.h”

e_bool_t e_is_on_core(const void *ptr);

Description

This function checks whether an address (either global or local) is within the memory space of

the caller core.

Return value

The function returns E_FALSE if the address is not in the caller’s space. Otherwise, it returns

E_TRUE.

116 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

13.7.7 e_neighbor_id()

Synopsis

#include “e-lib.h”

void e_neighbor_id(e_coreid_wrap_t dir, e_coreid_wrap_t wrap,

 unsigned *row, unsigned *col);

Description

This function calculates the (row, col) coordinates of the neighboring core, according to a

specified topology.

Cores can be logically chained in one linear string across the whole chip, from north-west core to

south-east core in a raster scan fashion. The cores can also be chained in a row-wise fashion or

column-wise fashion, such that rows or columns create parallel rings.

The dir argument (one of E_NEXT_CORE, E_PREV_CORE) specifies whether the next or

previous cores in the chain are required. The function will always calculate the coordinates of

another core on the same group, wrapping on a row, column, or workgroup boundary as

specified by the wrap argument (one of E_ROW_WRAP, E_COL_WRAP, E_GROUP_WRAP). The

calculated coordinates are returned in the row and col parameters.

This function is limited to workgroup dimensions (rows and columns) which are powers of 2,

i.e., 2, 4, 8, etc.

Return value

None.

117 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14. Epiphany Host Library (eHAL)

14.1 Overview

The Epiphany Hardware Abstraction Layer (eHAL) library provides functionality for

communicating with the Epiphany chip when the application runs on a host. The host can be a

PC or an embedded processor. The communication is performed using memory writes to and

reads from shared buffers that the applications on both sides should define. The library interface

is defined in the e-hal.h header file.

In order to use this library in your application, the compiler and linker must be configured with

the paths to the header file and the library binary. In your tools options use the following

configurations:

$ gcc -I${EPIPHANY_HOME}/tools/host/include \

 -L${EPIPHANY_HOME}/tools/host/lib -le-hal ...

Basic mode of operation

As described in an earlier chapter, the standard mode of operation of the eHAL API is working

in eCore workgroups. A workgroup is a rectangular mesh of eCore nodes that are allocated for

performing a computational task. It is possible to load the group with identical copies of the

same program (SPMD style), or load subgroups, or even single cores with different programs. It

is the user’s responsibility to make sure that tasks are not allocated to a previously allocated

group cores.

External (shared) memory architecture

The host application can communicate with the Epiphany device by either accessing the eCore’s

private memory space, or by using shared buffers in the device external memory.

In a platform which implements such shared memory (for example, a bulk of DRAM accessible

by the host via system bus or other connection, and by the Epiphany via the eLinks), there may

be a different mapping of the physical address space of this memory, as seen from the host side

and from the Epiphany side. For example, the Parallella platform is configured by default with

32MB of DRAM used as device memory. The physical address of this memory segment is

118 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

0x1e0000000x1fffffff. However, to overcome some system limitations, this range is

aliased to address 0x8e0000000x8fffffff, as seen from the Epiphany side. For example,

when a buffer of 8KB is allocated at offset 64KB on that segment, the host sees this buffer as

occupying addresses 0x1e0100000x1e012000. For accessing the buffer from the Epiphany

program, this range is aliased to 0x8e0100000x8e012000.

The base addresses of the external shared memory space (the real and the aliased) are defined in

the Hardware Description File (HDF) so the eHAL is aware of the difference. The aliased base

address is also defined in the Epiphany program’s Linker Description File (LDF).

Enumerated constants and macros

typedef enum {
 E_FALSE,

 E_TRUE,

} e_bool_t;

typedef enum {

 E_OK,

 E_ERR,

 E_WARN,

} e_return_stat_t;

The following symbols are defined and can be used as addresses to access eCore and Epiphany

system registers using the e_read() and e_write() API’s:

// General Purpose Registers

// (see Epiphany Architecture Manual for details)

typedef enum

{

 E_REG_R0, E_REG_R8, E_REG_R16, E_REG_R24,

 E_REG_R1, E_REG_R9, E_REG_R17, E_REG_R25,

 E_REG_R2, E_REG_R10, E_REG_R18, E_REG_R26,

 E_REG_R3, E_REG_R11, E_REG_R19, E_REG_R27,

 E_REG_R4, E_REG_R12, E_REG_R20, E_REG_R28,

 E_REG_R5, E_REG_R13, E_REG_R21, E_REG_R29,

 E_REG_R6, E_REG_R14, E_REG_R22, E_REG_R30,

 E_REG_R7, E_REG_R15, E_REG_R23, E_REG_R31,

 E_REG_R32, E_REG_R40, E_REG_R48, E_REG_R56,

 E_REG_R33, E_REG_R41, E_REG_R49, E_REG_R57,

 E_REG_R34, E_REG_R42, E_REG_R50, E_REG_R58,

 E_REG_R35, E_REG_R43, E_REG_R51, E_REG_R59,

119 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

 E_REG_R36, E_REG_R44, E_REG_R52, E_REG_R60,

 E_REG_R37, E_REG_R45, E_REG_R53, E_REG_R61,

 E_REG_R38, E_REG_R46, E_REG_R54, E_REG_R62,

 E_REG_R39, E_REG_R47, E_REG_R55, E_REG_R63,

} e_gp_reg_id_t;

// eCore Special Registers

typedef enum

{

 // Control Registers

 E_REG_CONFIG, E_REG_IRET,

 E_REG_STATUS, E_REG_IMASK,

 E_REG_FSTATUS, E_REG_ILAT,

 E_REG_PC, E_REG_ILATST,

 E_REG_DEBUGSTATUS, E_REG_ILATCL,

 E_REG_DEBUGCMD, E_REG_IPEND,

 E_REG_LC,

 E_REG_LS,

 E_REG_LE,

 // DMA registers

 E_REG_DMA0CONFIG, E_REG_DMA1CONFIG,

 E_REG_DMA0STRIDE, E_REG_DMA1STRIDE,

 E_REG_DMA0COUNT, E_REG_DMA1COUNT,

 E_REG_DMA0SRCADDR, E_REG_DMA1SRCADDR,

 E_REG_DMA0DSTADDR, E_REG_DMA1DSTADDR,

 E_REG_DMA0AUTODMA0, E_REG_DMA1AUTODMA0,

 E_REG_DMA0AUTODMA1, E_REG_DMA1AUTODMA1,

 E_REG_DMA0STATUS, E_REG_DMA1STATUS,

 // Event Timer Registers

 E_REG_CTIMER0, E_REG_CTIMER1,

 // Processor Control Registers

 E_REG_MEMPROTECT,

 E_REG_MESH_CONFIG,

 E_REG_COREID,

 E_REG_CORE_RESET,

} e_core_reg_id_t;

// Chip Registers

// (see Epiphany Chip Datasheets for details)

typedef enum

{

 E_REG_IO_LINK_MODE_CFG,

 E_REG_IO_LINK_TX_CFG,

 E_REG_IO_LINK_RX_CFG,

 E_REG_IO_LINK_DEBUG,

 E_REG_IO_GPIO_CFG,

 E_REG_IO_FLAG_CFG,

 E_REG_IO_SYNC_CFG,

 E_REG_IO_HALT_CFG,

120 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

 E_REG_IO_RESET,

} e_chip_reg_id_t;

// Epiphany system registers

// (see Board manual for details)

typedef enum

{

 E_SYS_CONFIG,

 E_SYS_RESET,

 E_SYS_VERSION,

 E_SYS_FILTERL,

 E_SYS_FILTERH,

 E_SYS_FILTERC,

} e_sys_reg_id_t

121 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.2 Platform Configuration Functions

14.2.1 Overview

These functions are used to initialize and prepare the Epiphany system for working with the Host

application. It also enables the query and retrieval of platform information.

Functions definition summary

int e_init(char *hdf);

int e_get_platform_info(e_platform_t *platform);

int e_finalize();

122 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.2.2 e_init()

Synopsis

#include “e-hal.h”

int e_init(char *hdf);

Description

This function initializes the HAL data structures, and establishes a connection to the Epiphany

platform. The platform parameters are read form a Hardware Description File (HDF), whose

path is given at the function argument.

If the hdf parameter is a NULL pointer, then the file location is read from the EPIPHANY_HDF

environment variable. This variable is normally set on your system startup file (~/.bashrc in

Linux), and reflects the structure of the underlying Epiphany platform. For example:

EPIPHANY_HDF=”${EPIPHANY_HOME}/bsps/parallella/parallella.xml”

If the EPIPHANY_HDF variable is not set, then the function will try to locate the platform.hdf

file located in the current BSP directory.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

Note: At the time of the release, the XML parser was not yet fully integrated into the driver.

Instead of an XML description file, the library now uses a simplified (flat) text file listing the

platform components. Please use the provided files or create your own accordingly:

EPIPHANY_HDF=”${EPIPHANY_HOME}/bsps/parallella/parallella.hdf”

123 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.2.3 e_get_platform_info()

Synopsis

#include “e-hal.h”

int e_get_platform_info(e_platform_t *platform);

Description

The Epiphany platform information is stored internally in an e_platform_t type object. It

contains the data on the various chips, external memory segments and geometry comprising the

system. Some of this data can be retrieved through this function.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

Note: The data that is currently made available through this function is:

char *version - platform version string

unsigned row, col - coordinates of effective chip area

unsigned rows, cols - size of effective chip area

int num_chips - number of Epiphany chips in platform

int num_emems - number of external memory segments

If necessary for the application, the internal object can be accessed using this declaration:

extern e_platform_t e_platform;

However, this practice should be normally avoided, and if used, absolutely no modification of

the data is allowed, or the integrity of the driver system may be broken. Additionally, because

the variable is currently exposed (the extern keyword is not really necessary), there should be

no user-defined object of this name in the application!

124 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.2.4 e_finalize()

Synopsis

#include “e-hal.h”

int e_finalize();

Description

Use this function to finalize the connection with the Epiphany system. Some resources that were

allocated in the e_init() call are released here.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

125 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.3 Workgroup and External Memory Allocation Functions

14.3.1 Overview

These functions are used to assign and allocate the eCore workgroups and external memory

buffers resources.

Functions definition summary

int e_open(e_epiphany_t *dev, unsigned row, unsigned col,

 unsigned rows, unsigned cols);

int e_close(e_epiphany_t *dev);

int e_alloc(e_mem_t *mbuf, off_t base, size_t size);

int e_free(e_mem_t *mbuf);

126 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.3.2 e_open()

Synopsis

#include “e-hal.h”

int e_open(e_epiphany_t *dev, unsigned row, unsigned col,

 unsigned rows, unsigned cols);

Description

This function defines an eCore workgroup. The workgroup is defined in terms of the coordintaes

relative to the platform’s effective chip area. The arguments row and col define the place of the

group’s origin eCore. The origin is set relative to the Epiphany platform’s origin, defined in the

e_init() call. The arguments rows and cols give the group’s size, defining the work

rectangle. A work group can be as amall as a single core or as large as the whole available

effective chip area. The core group data is saved in the provided e_epiphany_t type object

dev.

Subsequent accesses to the core group (e.g., for read and write of data) are done using a

reference to the dev object.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

127 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.3.3 e_close()

Synopsis

#include “e-hal.h”

int e_close(e_epiphany_t *dev);

Description

The function closes the eCore workgroup. The resources allocated by the e_open() call are

released here. Use this function before re-allocating an eCore to a new workgroup.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

128 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.3.4 e_alloc()

Synopsis

#include “e-hal.h”

int e_alloc(e_mem_t *mbuf, off_t base, size_t size);

Description

This function defines a buffer in external memory. The buffer is defined in terms of the relative

from the beginning of the external memory segment, defined in the e_init() call. The

argument base defines the offset, starting at 0. The argument and size gives the buffer’s size.

The external memory buffer data is saved in the provided e_mem_t type object mbuf.

Subsequent accesses to the buffer (e.g., for read and write of data) are done using a reference to

the mbuf object.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

129 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.3.5 e_free()

Synopsis

#include “e-hal.h”

int e_free(e_mem_t *mbuf);

Description

The resources allocated by the e_alloc() call are released here. Use this function before re-

allocating an external memory space to a new buffer.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

130 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.4 Data Transfer Functions

14.4.1 Overview

These functions are used to read and write data from and to Epiphany eCore workgroups and

external memory buffers.

Functions definition summary

ssize_t e_read(void *dev, unsigned row, unsigned col,

 off_t from_addr, void *buf, size_t size);

ssize_t e_write(void *dev, unsigned row, unsigned col,

 off_t to_addr, const void *buf, size_t size);

131 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.4.2 e_read()

Synopsis

#include “e-hal.h”

ssize_t e_read(void *dev, unsigned row, unsigned col,

 off_t from_addr, void *buf, size_t size);

Description

This function reads data of length size from a workgroup core or an external memory buffer to

the local byte buffer buf. The argument dev specifies the target from which to read the data. It

can be of either types e_epiphany_t or e_mem_t.

If an object of type e_epiphany_t is given, then the row and col arguments specify the

relative target eCore coordinates in the workgroup.

If an object of type e_mem_t is given, then the row and col arguments are ignored.

In both cases, the from_addr parameter specifies the write offset relative to the buffer’s start, or

to the eCore’s internal space.

To access system registers, the to_addr parameter can be one of the register symbols of the

types e_gp_reg_id_t, e_core_reg_id_t, e_chip_reg_id_t, e_sys_reg_id_t.

Return value

If successful, the function returns the number of bytes read. On a failure it returns E_ERR.

132 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.4.3 e_write()

Synopsis

#include “e-hal.h”

ssize_t e_write(void *dev, unsigned row, unsigned col,

 off_t to_addr, const void *buf, size_t size);

Description

This function writes data of length size from the local byte buffer buf to a workgroup core or

an external memory buffer. The argument dev specifies the target on which to write the data. It

can be of either types e_epiphany_t or e_mem_t.

If an object of type e_epiphany_t is given, then the row and col arguments specify the

relative target eCore coordinates in the workgroup.

If an object of type e_mem_t is given, then the row and col arguments are ignored.

In both cases, the to_addr parameter specifies the write offset relative to the buffer’s start, or to

the eCore’s internal space.

To access system registers, the to_addr parameter can be one of the register symbols of the

types e_gp_reg_id_t, e_core_reg_id_t, e_chip_reg_id_t, e_sys_reg_id_t.

Return value

If successful, the function returns the number of bytes written. On a failure it returns E_ERR.

133 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5 System Control Functions

14.5.1 Overview

These functions provide some means to control different aspects of the system and a program

execution.

Functions definition summary

int e_reset_system();

int e_reset_group(e_epiphany_t *dev);

int e_start(e_epiphany_t *dev, unsigned row, unsigned col);

int e_start_group(e_epiphany_t *dev);

int e_signal(e_epiphany_t *dev, unsigned row, unsigned col);

int e_halt(e_epiphany_t *dev, unsigned row, unsigned col);

int e_resume(e_epiphany_t *dev, unsigned row, unsigned col);

134 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.2 e_reset_system()

Synopsis

#include “e-hal.h”

int e_reset_system();

Description

Use this function to perform a full hardware reset of the Epiphany platform, including the

Epiphany chips and the FPGA glue logic.

Special care must be taken when using this function in a multiprocessing environment not to

disrupt working tasks, possibly launched by other applications.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

135 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.3 e_reset_group()

Synopsis

#include “e-hal.h”

int e_reset_group(e_epiphany_t *dev);

Description

Use this function to perform a soft reset of a workgroup.

Special care must be taken when using this function, as resetting the eCore when memory

transactions, that were generated with a core read instruction from the global memory space

(either LDR instruction or an instruction fetch from outside of the core) are not concluded can

bring the system to an undefined state.

Return value

If successful, the function returns E_OK.

136 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.4 e_start()

Synopsis

#include “e-hal.h”

int e_start(e_epiphany_t *dev, unsigned row, unsigned col);

Description

This function writes the SYNC signal to the workgroup core’s ILAT register. It causes the core to

jump to the IVT entry #0. Normally, this will be used after loading a program on the core.

The row and col parameters specify the target eCore coordinates, relative to the workgroup

given by the dev argument.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

137 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.5 e_start_group()

Synopsis

#include “e-hal.h”

int e_start_group(e_epiphany_t *dev);

Description

This function writes the SYNC signal to the workgroup cores’ ILAT registers. It causes the

workgroup cores to jump to their IVT entry #0. Normally, this will be used after loading a

program on the core.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

138 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.6 e_signal()

Synopsis

#include “e-hal.h”

int e_signal(e_epiphany_t *dev, unsigned row, unsigned col);

Description

This function writes the USER_INT (soft interrupt) signal to the workgroup core’s ILAT register.

It causes the core to jump to the IVT entry #9.

The row and col parameters specify the target eCore coordinates, relative to the workgroup

given by the dev argument.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

139 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.7 e_halt()

Synopsis

#include “e-hal.h”

int e_halt(e_epiphany_t *dev, unsigned row, unsigned col);

Description

This function halts the workgroup core’s program execution. It may be useful for debug

purposes.

The row and col parameters specify the target eCore coordinates, relative to the workgroup

specified by the dev argument.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

140 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.5.8 e_resume()

Synopsis

#include “e-hal.h”

int e_resume(e_epiphany_t *dev, unsigned row, unsigned col);

Description

This function resumes a workgroup core’s program execution that was previously stopped with a

call to e_halt().

The row and col parameters specify the target eCore coordinates, relative to the workgroup

specified by the dev argument.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

141 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.6 Program Load Functions

14.6.1 Overview

These loader functions load an Epiphany program on an eCore or an eCore workgroup in a

SPMD manner. Optionally, the loaded programs can be started immediately after loading the

group.

Functions definition summary

int e_load(char *executable, e_epiphany_t *dev, unsigned row,

 unsigned col, e_bool_t start);

int e_load_group(char *executable, e_epiphany_t *dev, unsigned row,

 unsigned col, unsigned rows, unsigned cols, e_bool_t start);

142 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.6.2 e_load()

Synopsis

#include “e-hal.h”

int e_load(char *executable, e_epiphany_t *dev, unsigned row,

 unsigned col, e_bool_t start);

Description

This function loads an Epiphany program onto a workgroup core. The executable string

specifies the path to the program’s image. The target core workgroup is specified by the dev

argument. The target core is specified by the row and col coordinates, relative to the

workgroup.

Optionally, a loaded program can be started immediately after loading, according to the start

parameter. When the start parameter is e_true, the program is launched after load. If it is

e_false, the program is not launched.

Program load should be performed only when the core is in an idle or halt state. A safe way to

achieve this is to use the e_reset_system() or e_reset_core() API’s before the load.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR.

Note: Currently, the eHAL supports loading executable images in the form of SREC file format.

Use the e-objcopy utility to generate an SREC image from the binary ELF executable, as

described in chapters 6 and 9 of this book.

143 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.6.3 e_load_group()

Synopsis

#include “e-hal.h”

int e_load_group(char *executable, e_epiphany_t *dev, unsigned row,

 unsigned col, unsigned rows, unsigned cols, e_bool_t start);

Description

This function loads an Epiphany program onto a subgroup of a workgroup. The executable

string specifies the path to the program’s image. The target workgroup is specified by the dev

argument. The target cores subgroup for loading the image is specified by the row and col

coordinates, relative to the workgroup origin. The rows and cols parameters specify the size of

the subgroups. All cores in the subgroup are loaded with the same program image.

Optionally, the loaded programs can be started immediately after loading on all cores in the

subgroup, according to the start parameter. When the start parameter is e_true, the

programs are launched after load. If it is e_false, the programs are not launched.

Program load should be performed only when the core is in an idle or halt state. A safe way to

achieve this is to use the e_reset_system() or e_reset_core() API’s before the load.

Return value

If successful, the function returns E_OK. On a failure it returns E_ERR. Some non-fatal erroneous

image content generates an E_WARN return value. The SREC parser ignores the errors and

continues the program load.

Note: Currently, the eHAL supports loading executable images in the form of SREC file format.

Use the e-objcopy utility to generate an SREC image from the binary ELF executable, as

described in chapters 6 and 9 of this book.

144 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7 Utility Functions

14.7.1 Overview

These is a set of utility functions, provided for easing some Host application programming tasks.

Functions definition summary

unsigned e_get_num_from_coords(e_epiphany_t *dev, unsigned row,

 unsigned col);

void e_get_coords_from_num(e_epiphany_t *dev, unsigned corenum,

 unsigned *row, unsigned *col);

e_bool_t e_is_addr_on_chip(void *addr);

e_bool_t e_is_addr_on_group(e_epiphany_t *dev, void *addr);

e_hal_diag_t e_set_host_verbosity(e_hal_diag_t verbose);

e_loader_diag_t e_set_loader_verbosity(e_loader_diag_t verbose);

145 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.2 e_get_num_from_coords()

Synopsis

#include “e-hal.h”

unsigned e_get_num_from_coords(e_epiphany_t *dev, unsigned row,

 unsigned col);

Description

Convert a workgroup’s eCore coordinates to a core number. The workgroup is defined by the

dev argument. The core numbering is done in a “raster scan” manner, starting at the groups

origin as core #0 and continuing row-wise. Thus, the number of the first core in the second row

equals to the group’s cols parameter, and the last core in the third row equals to (3cols-1).

The last core in the group is numbered (rowscols-1).

Return value

The function returns the selected core’s number.

146 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.3 e_get_coords_from_num()

Synopsis

#include “e-hal.h”

void e_get_coords_from_num(e_epiphany_t *dev, unsigned corenum,

 unsigned *row, unsigned *col);

Description

Convert a workgroup’s eCore number to core’s coordinates, relative to the group origin. The

workgroup is defined by the dev argument. The core numbering is done in a raster scan manner,

starting at the groups origin as core #0 and continuing column-wise. Thus, the (row, col)

coordinates of the core #0 are (0,0), core #cols coordinates are (1,0), and core #(3cols-

1) coordinates are (2,cols-1). The last core in the group, numbered (rowscols-1), has

coordinates (rows-1,cols-1).

Return value

The function returns the selected core’s coordinates.

147 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.4 e_is_addr_on_chip()

Synopsis

#include “e-hal.h”

e_bool_t e_is_addr_on_chip(void *addr);

Description

This function checks whether a global, 32-bit address, given by argument addr, is within a

physical Epiphany chip’s space.

Return value

The function returns e_true if an address is on a chip and e_false otherwise.

148 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.5 e_is_addr_on_group()

Synopsis

#include “e-hal.h”

e_bool_t e_is_addr_on_group(e_epiphany_t *dev, void *addr);

Description

This function checks whether a global, 32-bit address, given by argument addr, is within a core

workgroup’s space. The workgroup is specified by the dev argument.

Return value

The function returns e_true if an address is on a workgroup and e_false otherwise.

149 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.6 e_set_host_verbosity()

Synopsis

#include “e-hal.h”

e_hal_diag_t e_set_host_verbosity(e_hal_diag_t verbose);

Description

This function sets the verbosity level of the eHAL function calls. The levels defined from H_D0

to H_D4. Level H_D0 means no diagnostics are emitted, and any higher level designates more

detailed diagnostics. This function is meant for diagnostics and debug purposes.

Return value

The function returns the old diagnostics level value.

150 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

14.7.7 e_set_loader_verbosity()

Synopsis

#include “e-hal.h”

e_loader_diag_t e_set_loader_verbosity(e_loader_diag_t verbose);

Description

This function sets the verbosity level of the program loader function calls, on top of the other

eHAL calls diagnostics.. The levels defined from L_D0 to L_D4. Level L_D0 means no

diagnostics are emitted, and any higher level designates more detailed diagnostics. This function

is meant for diagnostics and debug purposes.

Return value

The function returns the old diagnostics level value.

151 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Appendix A: Application Binary Interface (EABI)

A.1 Overview

This chapter is intended for library developers and users who develop custom assembly routines

that can be called from the Epiphany C-compiler. The Epiphany ABI (EABI) is an agreement

between developers that ensures interoperability between different libraries. The EABI defines a

common procedure call standard and restrictions on data types and alignment. Some of the

details defined by the EABI include:

 How the program (caller) should set up the machine state before calling a procedure.

 How the called procedure (callee) should preserve program state across the call.

 The right of the called procedure to alter the program state of its caller.

Conformance to this standard requires that:

 At all times, stack limits and basic stack alignment are observed.

 The routines of publicly visible interface conform to the procedure call standard.

 The data elements of publicly visible interface conform to the data layout rules. Data

elements include: parameters to routines named in interfaces, static data, and all data

addressed by pointer values across interfaces.

152 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

A.2 Data Types and Alignment Restrictions

A.2.1 Arithmetic Data Types

Table A.1 shows the fundamental data types supported by the Epiphany architecture. Memory

can be considered as an array of bytes, with each byte separately addressable by the software.

The memory layout accepted is little-endian data. The least significant bit of an object is always

bit 0.

Table ‎14.1: Arithmetic Data Types

C/C++ Type Machine Type Size (Bytes) Restriction
char Signed byte 1
unsigned char Unsigned byte 1
signed char Signed byte 1
signed short Signed half-word 2 Must be half-word aligned

in memory
unsigned short Unsigned half-word 2 Must be half-word aligned

in memory
signed int Signed word 4 Must be word aligned in

memory
unsigned int Unsigned word 4 Must be word aligned in

memory
signed long Signed word 4 Must be word aligned in

memory
unsigned long Unsigned word 4 Must be word aligned in

memory
signed long long Signed double word 8 Must be double-word

aligned in memory
unsigned long long Unsigned double word 8 Must be double-word

aligned in memory
float IEEE754 Single-

Precision Floating Point

4 Must be word aligned in

memory
double IEEE754 Double-

Precision Floating Point

8 Must be double-word

aligned in memory

153 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

A.2.2 Composite Types

In additional to the fundamental data types described previously, the Epiphany supports

composite types, which are a collection of one or more fundamental data types that can be

processed as a single entity during procedure calls. Each one of the composite types may contain

composite types and/or fundamental data types as members.

Aggregates

An aggregate is a type with members that are laid out sequentially in memory. The alignment of

the aggregate shall be the alignment of its most aligned component. The size of the aggregate

shall be the smallest multiple of its alignment that is sufficient to hold all of its members when

they are laid out according to these rules.

Unions

A union is a composite type, where each of the members has the same address. The alignment of

a union shall be the alignment of its most-aligned component. The size of a union shall be the

smallest multiple of its alignment that is sufficient to hold its largest member. Structures and

unions are laid out according to the fundamental data types of which they are composed. All

members are laid out in declaration order.

Arrays

An array is a repeated sequence of some other type (its base type). The alignment of an array

shall be the alignment of its base type. The size of an array shall be the size of the base type

multiplied by the number of elements in the array.

154 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

A.3 Procedure Call Standard

A.3.1 Overview

This chapter defines the protocol for defining and using procedures in a functional language. It

includes rules for stack management, register usage, and argument passing.

A.3.2 Register Usage

The Epiphany architecture includes 64 general word length purpose register. Table A.2 below

shows the register usage convention in the EABI. The register usage convention acts as a

contract to guarantee that a caller and callee function can work together with predictable results.

Table ‎14.2: Register Usage and Procedure Call Standard

Name Synonym Role in the Procedure Call Standard Saved By

R0 A1 Argument/result/scratch register #1 Caller saved

R1 A2 Argument/result/scratch register #2 Caller saved

R2 A3 Argument/result/scratch register #3 Caller saved

R3 A4 Argument/result/scratch register #4 Caller saved

R4 V1 Register variable #1 Callee saved

R5 V2 Register variable #2 Callee saved

R6 V3 Register variable #3 Callee saved

R7 V4 Register variable #4 Callee saved

R8 V5 Register variable #5 Callee saved

R9 V6 Register variable #6 Callee saved

R10 V7 Register Variable #7 Callee saved

R11 V8/FP Variable Register #8/Frame Pointer Callee saved

R12 - Intra-procedure call scratch register Caller saved

R13 SP Stack Pointer N/A

R14 LR Link Register Callee saved

R15 General use Callee saved

R16-R27 General use Caller saved

155 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

R28-R31 Reserved for constants N/A

R32-R43 General use Callee saved

R44-R63 General use Caller saved

The first four registers R0-R3 (A1-A4) are used to pass argument values into a subroutine and to

return a result value from a function. They may also be used to hold intermediate values

within a routine (but, in general, only between subroutine calls).

Typically, the registers R4-R11, R14-R15, and R32-R43 are used to hold the values of a routine’s

local variables.

A subroutine must preserve the contents of the registers R4-R11, R14-R15, and R32-R43

A.3.3 Handling Large Data Types

Fundamental types larger than 32 bits may be passed as parameters to, or returned as the result

of, function calls. A double-word sized type is passed in two consecutive registers (e.g., R0 and

R1, or R2 and R3).

A.3.4 Stack Management

The stack is a contiguous area of memory that may be used for storage of local variables and for

passing additional arguments to subroutines when there are insufficient argument registers

available. The stack implementation is full-descending, with the current extent of the stack held

in the register SP (R13). The stack will, in general, have both a base and a limit though in

practice an application may not be able to determine the value of either.

The stack may have a fixed size or be dynamically extendable (by adjusting the stack-limit

downwards).The rules for maintenance of the stack are divided into two parts: a set of constraints

that must be observed at all times, and an additional constraint that must be observed at a public

interface. At all times the following basic constraints must hold:

 Stack-limit < SP <= stack-base. The stack pointer must lie within the extent of the stack.

156 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

 (SP mod 4)=0. The stack pointer must at all times be aligned to a word boundary (where

SP is the value of register R13).

 A process may only access (for reading or writing) the closed interval of the entire stack

delimited by [SP, (stack-base – 1)].

 The stack frame must be double-word aligned.

A.3.5 Subroutine Calls

The Epiphany includes ‘BL’ and ‘JALR’ instructions for calling subroutines. These instructions

transfer the sequentially next value of the program counter—the return address —into the link

register (LR) and the destination address into the program counter (PC). The result is to transfer

control to the destination address, passing the return address in LR as an additional parameter to

the called subroutine. Control is returned to the instruction following the BL/JALR when the

return address is loaded back into the PC using the JR/RTS instruction.

A.3.6 Procedure Result Return

The manner in which a result is returned from a procedure is determined by the type of the result.

A data type that is smaller than 4 bytes is zero or sign-extended to a word and returned in r0.

A word-sized data type (e.g., int, float) is returned in r0.

A double-word sized data type (e.g., long long, double) is returned in r0 and r1.

A Composite Type not larger than 4 bytes is returned in r0. The format is as if the result had

been stored in memory at a word-aligned address and then loaded into r0 with an LDR

instruction. Any bits in r0 that lie outside the bounds of the result have unspecified values.

A Composite Type larger than 4 bytes, or whose size cannot be determined statically by both

caller and callee, is stored in memory at an address passed as an extra argument when the

function was called.

157 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

A.3.7 Parameter Passing

The base standard provides for passing arguments in core registers (r0-r3) and on the stack. For

subroutines that take a small number of parameters, only registers are used, greatly reducing

procedure call overhead.

158 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Appendix B: Board Support Packages

B.1 Board Support Package Descriptor File

The Epiphany uses an XML format that allows the flexibility of defining custom boards so that

the Epiphany SDK can be automatically configured to work correctly. Standard boards and

evaluation kits officially supported by Adapteva are distributed with XML board support

packages (BSP) pre-written.

The following example code shows the XML configuration file for the Epiphany Multicore

Evaluation Kit (EMEK).

<?xml version="1.0"?>
<platform version="1" name="AAHM" lib="libftdi_target.so" libinitargs="">
 <chips>
 <chip version="3" id="(32,36)" rows="4" cols="4" host_base="0x12000000"

core_memory_size="0x8000">
 <ioregs col="2" row="2"/>
 </chip>
 <chip version="5" id="(32,32)" rows="1" cols="1" host_base="0x12000000"

core_memory_size="0x8000" />
 </chips>
 <external_memory>
 <bank name="EXTERNAL_DRAM_0" start="0x80000000" size="0x01000000" />
 <bank name="EXTERNAL_DRAM_1" start="0x81000000" size="0x01000000" />
 <bank name="EXTERNAL_SRAM" start="0x920f0000" size="0x00010000" />
 </external_memory>
</platform>

159 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

The following sections define the different tags used in the ESDK XML configuration format.

The <platform> Element

The <platform> tag will serve as the root tag for the document and has the following

attributes:
name

This attribute provides a human-readable name for the platform being described by

the document. An example value would be "AAHM" for the Epiphany Multicore

Evaluation Kit. This name is used to acknowledge a successful startup sequence by

the ‘e-server’.
lib

The lib attribute defines the name of the library containing the software needed to

access the platform from a Linux host. In the case of the EMEK, a lib might be

"ftdilib_target".
libinitargs

This attribute defines a string that will be passed to the library's init_platform()

function. The string is actually embedded in a structure containing other needed

information, and a pointer to this structure is passed to init_platform(). For the

EMEK, the string will be NULL, but other systems may require additional

information provided by this string.

The <chips> Element

The <chips> tag will have the following sub-elements:

<chips>

This tag serves as a container for at least one <chip> tag. It has the following sub-

elements:
<chip>

This tag defines a single chip within the platform. It has the following attributes:
version

This required attribute defines the version number of the chip, and should be

unique for each incarnation of the chip.
id

This attribute defines the chip's row and column id. The values specified here

should match the YID and XID pin settings of the device, meaning it does not

include the portions of the coordinates that are internal to the chip. In the case

of a 16-core device, YID and XID are four bits each.
rows

This attribute defines the number of rows in the device.
cols

This attribute defines the number of columns in the device.
host_base

This attribute gives the library a base address that it may use for addressing the

device's host. In the case of the AAHM on an S3 Devkit, it would be equal to

0x12000000. This is the beginning of an address range within the FPGA on the

S3 Devkit containing control registers (such as reset) and an area of memory

used as a readback destination. Use of this field is specific to the library.

160 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

core_memory_size

This attribute defines the amount of memory (in bytes) internal to each core in

the device. If omitted, it defaults to 32K bytes.

The <chip> tag may optionally have the following sub-elements:
<cores>

This tag defines an array of <core> tags. If this array is omitted, the parser will

assume that all the cores within the device (as defined by the rows and cols

attributes) are present.
<core>

The core tag can be used to explicitly identify the cores within the device.

It has the following attribute:
id

This attribute identifies the local coordinates of the core within the

chip. That is, the internal portion of the core's row and column

coordinates.
<ioregs>

This subelement is used to identify the location of any I/O registers within the

chip, such as link port control or GPIO registers. If it is omitted, the device is

assumed to have no I/O registers. If present, it requires the following attributes:
col

This attribute defines the column in which the north and south control

registers lie. The north registers will reside in row 0, and the south

registers will reside in the chip's maximum row number.
row

This attribute defines the row in which the east and west control registers

lie. The east registers will reside in column 0, and the west registers will

reside in the chip's maximum column number.

161 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

The <external_memory> Element

The <external_memory> tag may have the following optional sub-elements:

<external_memory>

This element defines an array of external memory banks. It requires at least one <bank>

sub-element.
<bank>

This tag identifies one bank of external memory available to the chip. It has the

following attributes, all of which are required.
name

This attribute names the memory bank, and could be used by a linker script

code generator.
start

This attribute defines the starting address of the memory bank (as dereferenced

by an Epiphany core).
size

This attribute defines the size (in bytes) of the memory bank.

Note: The current XML parser is implemented in C++. In order to keep the eHAL library C

compatible when processing the HDF, we could not use this parser, and plan to replace it with a

C implementation.

Until the replacement is integrated in, the eHAL does not support the XML file format. Instead, a

simplified text file was defined. This file has the .hdf extension, and includes information

similar to that of the XML HDF files. Here’s what a sample file looks like:

 // Platform description for the

 // ZedBoard/512MB/E16G3

 PLATFORM_VERSION 0x00000300

 ESYS_REGS_BASE 0x808f0f00

 NUM_CHIPS 1

 CHIP E16G301

 CHIP_ROW 32

 CHIP_COL 8

 NUM_EXT_MEMS 1

 EMEM ext-DRAM

 EMEM_BASE_ADDRESS 0x1e000000

 EMEM_EPI_BASE 0x8e000000

 EMEM_SIZE 0x02000000

 EMEM_TYPE RDWR

162 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Structure Definition

The XML file will be parsed by the top-level code in whatever tool needs the information, and its

data will be captured in a C-language structure. A pointer to this structure can then be passed to

any of the tool's subcomponents (such as libftdi_target in the case of gdbserver). The structures

required are defined below:

// Structure describing each chip in the system
typedef struct
{
 char *version; // version of the chip
 unsigned yid; // chip coordinates (YID[0:3] pins)
 unsigned xid; // chip coordinates (XID[0:3] pins)
 unsigned ioreg_row; // row within chip where I/O registers are located
 unsigned ioreg_col; // column within chip where I/O registers are located
 unsigned num_rows; // number of rows in the chip
 unsigned num_cols; // number of cols in the chip
 void *host_base; // base address of host (for reset, readback, etc)
 size_t core_memory_size; // bytes of internal memory in each core
} chip_def_t;

// Structure describing each external memory segment available to the chips.
typedef struct
{
 char *name; // name of the memory segment (can be used in linker script)
 void *base; // base address of memory segment
 size_t size; // number of bytes in the memory segment
} mem_def_t;

// Structure containing the data parsed from the XML file and
// passed to a subordinate function.
typedef struct
{
 char *name; // name of the platform (i.e. "AAHM")
 char *lib; // name of platform library (i.e. "libftdi_target")
 char *libinitargs; // additional argument string passed to lib init fxn
 unsigned num_chips // number of elements in chips[] array
 chip_def_t *chips; // array of chips[]
 unsigned num_banks; // number of elements in ext_mem[] array
 mem_def_t *ext_mem; // array of ext_mem[]
} platform_definition_t;

163 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

Appendix C: Changes from Previous Revisions

Revision Changes

5.13.09.10 Updated e-read and e-write utilities options

Updated system register enumerations

Minor text correction

5.13.07.09 Updated installation procedure

Updated tools documentation links

Added note on Eclipse

Added chapter on E-UTILS for e-reset, e-loader, e-read, e-write, e-hw-rev

Added chapter on the new Epiphany Programming Model

Updated the E-LIB chapter:

* Added description for the new workgroup config objects

* Revised enumeration type and symbol names

* Split register enumeration to functional groups and added _REG_

* Add some GP regs and a couple more system regs

* Modified the following functions:

-- Removed e_sysreg_read(),e_sysreg_write(), e_gid(), e_gie(), e_gie_restore(),

e_irq_disable(), e_irq_enable(), e_irq_raise(), e_irq_remote_raise(),

e_irq_lower(), e_irq_restore(), e_mutex_destroy(), e_coreid_from_address(),

e_address_from_coreid(), e_coreid_origin()

-- Added e_reg_read(), e_reg_write(), e_irq_attach(), e_irq_global_mask(),

e_irq_mask(), e_irq_set(), e_irq_clear(), e_ctimer_wait(), e_read(), e_write(),

e_dma_wait(), e_dma_set_desc(), e_barrier_init(), e_barrier(),

e_get_global_address()

-- Modified e_ctimer_set(), e_ctimer_stop(), e_dma_copy(), e_dma_start(),

e_mutex_init(), e_mutex_lock(), e_mutex_trylock(), e_mutex_unlock(),

e_is_oncore(), e_neighbor_id()

Updated the E-HAL chapter:

* Revised enumeration symbols

164 Copyright 2011-2013 Adapteva. All rights reserved REV 5.13.09.10

* Split register enumeration to functional groups and added _REG_

* Modified the System Control section:

-- Added e_start_group()

-- SWI now called USER_INT

-- e_halt() and e_resume() now implemented

-- Modified e_set_host_verbosity(), e_set_loader_verbosity()

4.13.03.30

	1. Introduction
	1.1 SDK Overview
	1.2 Epiphany Memory Model
	1.3 Epiphany Programming Framework
	1.4 Epiphany SDK Directory Structure
	1.5 ESDK Installation
	1.6 Additional Documentation and Resources

	2. Epiphany Multicore Development IDE (ECLIPSE)
	2.1 Overview
	2.2 Epiphany IDE tutorial
	2.3 Online Eclipse Help for Common Tasks
	2.4 Updating the Eclipse Installation

	3. C/C++ Compiler (E-GCC)
	3.1 Overview
	3.2 Simple Example
	3.3 Compiler Command-line Options
	3.4 GNU Function Attributes
	3.5 Epiphany Specific Compiler Attributes

	4. Assembler (E-AS)
	4.1 Overview
	4.2 Simple Example
	4.3 Command Line Options
	4.4 General Syntax
	4.5 Assembler Syntax Reference

	5. Linker (E-LD)
	5.1 Overview
	5.2 Simple Examples
	5.3 Command Line Options
	5.4 Linker Script Overview
	5.5 Explicit Code and Data Memory Management
	5.6 Memory Management Examples

	6. ELF Utilities
	6.1 Overview
	6.2 Utility Summary

	7. Instruction Set Simulator (E-RUN)
	7.1 Overview
	7.2 Simple Example
	7.3 Command Line Options

	8. Hardware Connection Server (E-SERVER)
	8.1 Overview
	8.2 Simple Example
	8.3 Command Line Options
	8.4 Target Server Connection API

	9. Debugger (E-GDB)
	9.1 Overview
	9.2 Simple Examples
	9.3 Command Line Options
	9.4 Quitting GDB
	9.5 Shell I/O
	9.6 Getting Help
	9.7 Command Syntax
	9.8 Command Summary
	9.9 Epiphany GDB Limitations

	10. Epiphany SDK Utilities (E-UTILS)
	10.1 Overview
	10.2 Reset Utility (E-RESET)
	10.2.1 Example

	10.3 Loader Utility (E-LOADER)
	10.3.1 Command Line Options
	10.3.2 Example

	10.4 Memory Read Utility (E-READ)
	10.4.1 Command Line Options
	10.4.2 Example

	10.5 Memory Write Utility (E-WRITE)
	10.5.1 Command Line Options
	10.5.2 Example

	10.6 Hardware Revision Utility (E-HW-REV)
	10.6.1 Example

	11. Standard Library Support
	11.1 Overview
	11.2 Standard C Libraries
	11.3 Standard Math Library (math.h)

	12. Epiphany System Programming Model
	13. Epiphany Hardware Utility Library (eLib)
	13.1 Overview
	13.2 System Register Access Functions
	13.2.1 Overview
	13.2.2 e_reg_read()
	13.2.3 e_reg_write()
	13.2.4

	13.3 Interrupt Service Functions
	13.3.1 Overview
	13.3.2 e_irq_attach()
	13.3.3 e_irq_global_mask()
	13.3.4 e_irq_mask()
	13.3.5 e_irq_set()
	13.3.6 e_irq_clear()

	13.4 Timer Functions
	13.4.1 Overview
	13.4.2 e_ctimer_get()
	13.4.3 e_ctimer_set()
	13.4.4 e_ctimer_start()
	13.4.5 e_ctimer_stop()
	13.4.6 e_wait()

	13.5 DMA and Data Movement Functions
	13.5.1 Overview
	13.5.2 e_read()
	13.5.3 e_write()
	13.5.4 e_dma_copy()
	13.5.5 e_dma_start()
	13.5.6 e_dma_busy()
	13.5.7 e_dma_wait()
	13.5.8 e_dma_set _desc()

	13.6 Mutex and Barrier Functions
	13.6.1 Overview
	13.6.2 e_mutex_init()
	13.6.3 e_mutex_lock()
	13.6.4 e_mutex_trylock()
	13.6.5 e_mutex_unlock()
	13.6.6 e_barrier_init()
	13.6.7 e_barrier()

	13.7 Core ID and Workgroup Functions
	13.7.1 Overview
	13.7.2 e_get_coreid()
	13.7.3 e_get_global_address ()
	13.7.4 e_coreid_from_coords()
	13.7.5 e_coords_from_coreid()
	13.7.6 e_is_oncore()
	13.7.7 e_neighbor_id()

	14. Epiphany Host Library (eHAL)
	14.1 Overview
	14.2 Platform Configuration Functions
	14.2.1 Overview
	14.2.2 e_init()
	14.2.3 e_get_platform_info()
	14.2.4 e_finalize()

	14.3 Workgroup and External Memory Allocation Functions
	14.3.1 Overview
	14.3.2 e_open()
	14.3.3 e_close()
	14.3.4 e_alloc()
	14.3.5 e_free()

	14.4 Data Transfer Functions
	14.4.1 Overview
	14.4.2 e_read()
	14.4.3 e_write()
	14.4.4

	14.5 System Control Functions
	14.5.1 Overview
	14.5.2 e_reset_system()
	14.5.3 e_reset_group()
	14.5.4 e_start()
	14.5.5 e_start_group()
	14.5.6 e_signal()
	14.5.7 e_halt()
	14.5.8 e_resume()

	14.6 Program Load Functions
	14.6.1 Overview
	14.6.2 e_load()
	14.6.3 e_load_group()

	14.7 Utility Functions
	14.7.1 Overview
	14.7.2 e_get_num_from_coords()
	14.7.3 e_get_coords_from_num()
	14.7.4 e_is_addr_on_chip()
	14.7.5 e_is_addr_on_group()
	14.7.6 e_set_host_verbosity()
	14.7.7 e_set_loader_verbosity()

	Appendix A: Application Binary Interface (EABI)
	A.1 Overview
	A.2 Data Types and Alignment Restrictions
	A.2.1 Arithmetic Data Types
	A.2.2 Composite Types

	A.3 Procedure Call Standard
	A.3.1 Overview
	A.3.2 Register Usage
	A.3.3 Handling Large Data Types
	A.3.4 Stack Management
	A.3.5 Subroutine Calls
	A.3.6 Procedure Result Return
	A.3.7 Parameter Passing

	Appendix B: Board Support Packages
	B.1 Board Support Package Descriptor File

	Appendix C: Changes from Previous Revisions

