

 Epiphany Architecture Reference

2 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table of Contents

1 Introduction ... 10

2 Programming Model ... 13

2.1 Programming Model Introduction ... 13

2.2 Parallel Programming Example ... 14

3 Software Development Environment .. 16

4 Memory Architecture ... 17

4.1 Memory Address Map.. 17

4.2 Memory Order Model .. 19

4.3 Endianness ... 20

4.4 Load/Store Alignment Restrictions .. 21

4.5 Program-Fetch Alignment Restrictions .. 21

5 eMesh Network-On-Chip ... 22

5.1 Network Topology ... 22

5.2 Routing Protocol .. 24

5.3 Read Transactions .. 25

5.4 Direct Inter-Core Communication ... 26

5.5 Arbitration Scheme .. 27

5.6 Data Sizes and Alignment .. 27

5.7 Multicast Routing .. 28

5.8 Detour Routing Support ... 28

6 Processor Node Subsystem ... 29

6.1 Processor Node Overview .. 29

6.2 Mesh-Node Crossbar Switch ... 31

6.3 Mesh-Node Arbitration .. 33

7 eCore CPU ... 34

7.1 Overview .. 34

7.2 Data Types ... 37

7.3 Local Memory Map ... 40

7.4 General Purpose Registers ... 40

7.5 Status Flags .. 43

7.6 The Epiphany Instruction Set ... 46

7.7 Pipeline Description ... 57

7.8 Interrupt Controller .. 63
7.8.1 Overview ... 63
7.8.2 Global Interrupt Disable Flag (GID) ... 65
7.8.3 User Interrupts ... 65
7.8.4 Interrupt Latency .. 66

7.9 Hardware Loops (LABS) ... 67

7.10 Debug Unit ... 68

3 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

8 Direct Memory Access (DMA) ... 69

8.1 Overview .. 69

8.2 DMA Descriptors ... 71

8.3 DMA Channel Arbitration .. 71

8.4 DMA Usage Restrictions ... 71

8.5 DMA Transfer Examples ... 72

9 Event Timers ... 73

10 Memory Protection Unit (LABS) .. 74

Appendix A: Instruction Set Reference .. 75

ADD .. 76

AND .. 77

ASR ... 78

B<COND> .. 79

BL ... 80

BKPT .. 82

EOR .. 83

FABS ... 84

FADD .. 85

FIX .. 86

FLOAT .. 87

FMADD .. 88

FMUL ... 88

FMSUB ... 90

FSUB .. 91

GID ... 92

GIE .. 93

IADD .. 94

IMADD ... 95

IMSUB .. 96

IMUL .. 97

ISUB ... 98

IDLE ... 99

JALR ... 100

JR .. 101

LDR (DISPLACEMENT) .. 102

LDR (INDEX) .. 103

LDR (POSTMODIFY) ... 104

LDR (DISPLACEMENT-POSTMODIFY) .. 105

LSL ... 106

LSR ... 107

MBKPT (LABS) ... 108

4 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MOV<COND> ... 109

MOV (IMMEDIATE) ... 110

MOVT (IMMEDIATE) ... 111

MOVFS ... 112

MOVTS .. 113

NOP .. 114

ORR .. 115

RTI .. 116

RTS (alias instruction) .. 117

SUB ... 118

STR (DISPLACEMENT) ... 119

STR (INDEX) ... 120

STR (POSTMODIFY) .. 121

STR (DISPLACEMENT-POSTMODIFY) .. 122

SYNC (LABS) .. 123

TRAP .. 124

TESTSET .. 125

WAND (LABS) ... 126

Appendix B: Register Set Reference ... 127

Register Summary ... 127

CMESHROUTE (G4-LABS) ... 130

COREID .. 131

CONFIG .. 132

CTIMER0 ... 135

CTIMER1 ... 135

DMAxAUTO0 (LABS) ... 135

DMAxAUTO1 (LABS) .. 136

DMAxCONFIG .. 136

DMAxCOUNT ... 138

DMAxDSTADDR ... 139

DMAxSRCADDR .. 139

DMAxSTATUS ... 140

DMAxSTRIDE ... 140

DEBUGCMD .. 141

DEBUGSTATUS .. 141

FSTATUS (LABS) .. 142

ILAT .. 142

ILATST ... 143

ILATCL ... 143

IMASK .. 143

IRET .. 144

IPEND ... 144

5 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LC (LABS).. 145

LE (LABS) .. 145

LS (LABS) .. 145

MEMPROTECT (LABS) ... 146

MEMSTATUS (LABS) ... 147

MESHCONFIG (LABS) ... 148

MULTICAST (LABS) .. 149

PC .. 149

RMESHROUTE (G4-LABS) ... 150

RESETCORE (LABS) .. 151

STATUS .. 151

XMESHROUTE (G4-LABS) ... 153

Appendix C: Instruction Set Decode ... 154

Appendix D: Architecture Evolutionary Changes ... 156

Appendix E: Architecture Manual Changes .. 157

Appendix F: Copyright Information ... 158

6 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

List of Figures

FIGURE 1: AN IMPLEMENTATION OF THE EPIPHANY ARCHITECTURE .. 10
FIGURE 2: EMESH™ NETWORK-ON-CHIP OVERVIEW .. 11
FIGURE 3: MATRIX MULTIPLICATION DATA FLOW .. 15
FIGURE 4: EPIPHANY SOFTWARE DEVELOPMENT STACK .. 16
FIGURE 5: EPIPHANY GLOBAL ADDRESS MAP ... 17
FIGURE 6: EPIPHANY SHARED MEMORY MAP .. 18
FIGURE 7: EMESH™ NETWORK TOPOLOGY .. 23
FIGURE 8: EMESH™ ROUTING EXAMPLE ... 26
FIGURE 9: POINTER MANIPULATION EXAMPLE ... 27
FIGURE 10: PROCESSOR NODE OVERVIEW .. 29
FIGURE 11: PROGRAM MEMORY LAYOUT OPTIMIZED FOR SIZE ... 32
FIGURE 12: PROGRAM MEMORY LAYOUT OPTIMIZED FOR SPEED... 32
FIGURE 13: ECORE CPU OVERVIEW ... 34
FIGURE 14: PIPELINE GRAPHICAL VIEW... 58
FIGURE 15: INTERRUPT SERVICE ROUTINE OPERATION ... 63
FIGURE 16: INTERRUPT LATENCY DEPENDENCY ON EXTERNAL READ ... 66

7 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

List of Tables

TABLE 1: MEMORY TRANSACTION ORDERING RULE .. 20
TABLE 2: LOAD AND STORE MEMORY-ALIGNMENT RESTRICTIONS .. 21
TABLE 3: ROUTING PROTOCOL SUMMARY ... 25
TABLE 4: PROCESSOR NODE ACCESS PRIORITIES .. 33
TABLE 5: IEEE SINGLE-PRECISION FLOATING-POINT DATA TYPES ... 38
TABLE 6: ECORE LOCAL MEMORY MAP SUMMARY ... 40
TABLE 7: GENERAL-PURPOSE REGISTERS ... 41
TABLE 8: CONDITION CODES ... 47
TABLE 9: INSTRUCTION SET SYNTAX ... 50
TABLE 10: BRANCHING INSTRUCTIONS .. 51
TABLE 11: LOAD/STORE INSTRUCTIONS .. 52
TABLE 12: INTEGER INSTRUCTIONS .. 53
TABLE 13: FLOATING-POINT INSTRUCTIONS ... 54
TABLE 14: SECONDARY INTEGER INSTRUCTIONS .. 55
TABLE 15: REGISTER MOVE INSTRUCTIONS .. 55
TABLE 16: PROGRAM FLOW INSTRUCTIONS ... 56
TABLE 17: PIPELINE STAGE DESCRIPTION ... 57
TABLE 18: PARALLEL SCHEDULING RULES ... 59
TABLE 19: IALU INSTRUCTION SEQUENCES ... 60
TABLE 20: FPU INSTRUCTION SEQUENCES .. 60
TABLE 21: LOAD INSTRUCTION SEQUENCES ... 61
TABLE 22: STALLS INDEPENDENT OF INSTRUCTION SEQUENCE.. 61
TABLE 23: BRANCH PENALTIES .. 62
TABLE 24: INTERRUPT SUPPORT SUMMARY ... 64
TABLE 25: DMA TRANSFER TYPES ... 69
TABLE 26: DMA DESCRIPTORS ... 71
TABLE 27: ECORE REGISTERS .. 127
TABLE 28: EVENT TIMER REGISTERS ... 128
TABLE 29: PROCESSOR CONTROL REGISTERS .. 128
TABLE 30: DMA REGISTERS ... 128
TABLE 31: MESH NODE CONTROL REGISTERS .. 129
TABLE 32: CMESHROUTE REGISTER .. 130
TABLE 33: COREID REGISTER .. 131
TABLE 34: CONFIG REGISTER .. 132
TABLE 35: CTIMER0 REGISTER .. 135
TABLE 36: CTIMER1 REGISTER .. 135
TABLE 37: DMAXAUTO0 REGISTER .. 135
TABLE 38: DMAXAUTO0 REGISTER .. 136
TABLE 39: DMACONFIG REGISTER .. 136
TABLE 40: DMACOUNT REGISTER ... 138
TABLE 41: DMADSTADDR REGISTER ... 139
TABLE 42: DMASRCADDR REGISTER ... 139
TABLE 43: DMASTATUS REGISTER ... 140
TABLE 44: DMASTRIDEREGISTER .. 141
TABLE 45: DEBUGCMD REGISTER ... 141
TABLE 46: DEBUGSTATUS REGISTER ... 141
TABLE 47: FSTATUS STATUS REGISTER ... 142
TABLE 48: ILAT REGISTER .. 142
TABLE 49: ILATST REGISTER ALIAS .. 143
TABLE 50: ILATCL REGISTER ALIAS .. 143
TABLE 51: IMASK REGISTER .. 144

8 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

TABLE 52: IRET REGISTER .. 144
TABLE 53: IPEND REGISTER ... 144
TABLE 54: LC REGISTER ... 145
TABLE 55: LE REGISTER ... 145
TABLE 56: LS REGISTER ... 145
TABLE 57: MEMPROTECT REGISTER ... 146
TABLE 58: MEMSTATUS REGISTER .. 147
TABLE 59: MESH CONFIGURATION REGISTER ... 148
TABLE 60: MULTICAST REGISTER .. 149
TABLE 61: PC REGISTER .. 149
TABLE 62: RESETCORE REGISTER .. 151
TABLE 63: STATUS REGISTER ... 151
TABLE 64: XMESHROUTE REGISTER .. 153
TABLE 65: OPCODE FIELD SUMMARY ... 154
TABLE 66: EPIPHANY INSTRUCTION DECODE TABLE ... 155
TABLE 67: EPIPHANY ARCHITECTURE CHANGES .. 156
TABLE 68: REFERENCE CHANGE LOG .. 157

9 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Preface

This document describes Adapteva’s Epiphany™ architecture. The document is written for

system programmers with a fundamental understanding of processor architectures and

experience with C programming.

Related Documents

 Epiphany SDK Reference: The development tools and run-time library for the Epiphany

architecture.

 Epiphany E16G301 Datasheet: Datasheet for 16-core System-on-Chip implementation of the

Epiphany architecture.

”LABS” Features

Features labeled with the “LABS” label should be considered experimental.

http://adapteva.com/docs/epiphany_sdk_ref.pdf
http://adapteva.com/docs/e16g301_datasheet.pdf

10 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

1 Introduction

The Epiphany architecture defines a multicore, scalable, shared-memory, parallel computing

fabric. It consists of a 2D array of compute nodes connected by a low-latency mesh network-on-

chip. Figure 1 shows an implementation of the architecture, highlighting the key components:

 A superscalar, floating-point RISC CPU in each mesh node that can execute two floating

point operations and a 64-bit memory load operation on every clock cycle.

 Local memory in each mesh node that provides 32 Bytes/cycle of sustained bandwidth and is

part of a distributed, shared memory system.

 Multicore communication infrastructure in each node that includes a network interface, a

multi-channel DMA engine, multicore address decoder, and network-monitor.

 A 2D mesh network that supports on-chip node-to-node communication latencies in

nanoseconds, with zero startup overhead.

Figure 1: An Implementation of the Epiphany Architecture

The Epiphany architecture was designed for good performance across a broad range of

applications, but really excels at applications with high spatial and temporal locality of data and

Router

`

MESH NODE

RISC CPU

Local

Memory

DMA

ENGINE

Network

Interface

11 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

code. Examples of such application domains include: image processing, communication, sensor

signal processing, encryption, and compression. High speed inter-processor communication is

supported by the Epiphany architecture’s 2D eMesh™ Network-On-Chip (NOC), shown in

Figure 2, which connects the on-chip processor nodes. The mesh network efficiently handles

traffic patterns in high-throughput real-time applications. The network takes advantage of spatial

locality and an abundance of short point-to-point on-chip wires to send complete transactions—

consisting of source address, destination address, and data—in a single clock cycle. Each routing

link can transfer up to 8 bytes of data on every clock cycle, allowing 64 bytes of data to flow

through every routing node on every clock cycle, supporting an effective bandwidth of 64

GB/sec at a mesh operating frequency of 1GHz.

Figure 2: eMesh™ Network-On-Chip Overview

 EMESH

ROUTER
On-chip write Network

Off-chip write Network

Read request Network

Mesh Node

8B / cycle

1B / cycle

1 request / 8 cycles

 EMESH

ROUTER

Mesh Node

 EMESH

ROUTER

Mesh Node

 EMESH

ROUTER

Mesh Node

RISC

CPU

Memory

DMA

ENGINE

Network

Interface

RISC

CPU

Memory

DMA

ENGINE

Network

Interface

RISC

CPU

Memory

DMA

ENGINE

Network

Interface

RISC

CPU

Memory

DMA

ENGINE

Network

Interface

12 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The memory map of the Epiphany architecture is flat and unprotected. Every mesh node has

direct access to the complete memory system, without limitation. The architecture employs a flat

32-bit memory map and supports up to 4096 individual mesh nodes.

The shared-memory architecture and low-latency, on-chip mesh network allows multicore

programs to pass messages from a few bytes to kilobytes with very little overhead. The high

bandwidth and low latency of the eMesh™ NOC means the Epiphany can support parallel

programming at a large kernel as well as fine-grained level in which small tasks can be executed

in parallel. The support of many different levels of parallelism within the Epiphany architecture

is a true breakthrough that will make parallel programming much easier and effective by

significantly reducing inter-task communication bottlenecks.

The key benefits of the Epiphany architecture are:

 Ease of Use: A multicore architecture that is ANSI-C/C++ programmable. This makes the

architecture accessible to every programmer, regardless of his or her level of expertise.

 Effectiveness: The general-purpose instruction, superscalar instruction issue, and large

unrestricted register file ensures that the application code written in ANSI-C can

approach the peak theoretical performance of the Epiphany architecture.

 Low Power: Aggressive microarchitecture optimizations, streamlined feature sets, and

extensive clock gating enables up to 70 GFLOP/Watt processing efficiency at 28nm.

 Scalability: The architecture can scale to thousands of cores on a single chip and millions of

cores within a larger system. This provides the basis for future performance gains from

increased parallelism.

13 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

2 Programming Model

2.1 Programming Model Introduction

The Epiphany architecture is programming-model neutral and compatible with most popular

parallel-programming methods, including Single Instruction Multiple Data (SIMD), Single

Program Multiple Data (SPMD), Host-Slave programming, Multiple Instruction Multiple Data

(MIMD), static and dynamic dataflow, systolic array, shared-memory multithreading, message-

passing, and communicating sequential processes (CSP). Adapteva anticipates that with time, the

ecosystem around the Epiphany multicore architecture will grow to include many of these

methods.

The key hardware features in the Epiphany architecture that enables effective support for parallel

programming methods are:

 General-purpose processors that support ANSI C/C++ task level programming at each node.

Shared-memory map that minimizes the overhead of creating task interfaces.

 Distributed-routing technology that decouples tasks from

 Inter-core message-passing with zero startup cost.

 Built-in hardware support for efficient multicore data-sharing.

14 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

2.2 Parallel Programming Example

The following example shows how multiple Epiphany mesh nodes can be combined to improve

the overall throughput of a computation. For simplicity, we have chosen matrix multiplication,

but the concepts also apply to more complicated programs. Matrix multiplication can be

represented by the following formula:

𝐶𝑖𝑗 = ∑(𝐴𝑖𝑘 𝐵𝑘𝑗)

𝑁−1

𝑘=0

Where A and B are the input matrices, C is the result, and i and j represent the row-column

coordinate of the matrix elements.

A naïve (but correct) implementation of the matrix multiplication running on a single core is

given below:

for(i = 0; i < M; i++)

 for(j = 0; j < N; j++)

 for(k = 0; k < K; k++)

 C[i][j] += A[i][k] * B[k][j];

The code above can be written in standard C/C++ and compiled to run on a single core, with

matrices A, B, and C placed in the core’s local memory. In this simple programming example,

there is no difference between the Epiphany architecture and any other single threaded processor

platform.

To speed up this calculation using several mesh nodes simultaneously, we first need to distribute

the A, B, C matrices over P tasks. Due to the matrix nature of the architecture, the natural way to

distribute large matrices is by cutting them into smaller blocks, sometimes referred to as

“blocked by row and column”. We then construct a SPMD program that runs on each of the

mesh nodes.

Figure 3 shows how the matrix multiplication can be divided into 16 sub-tasks and mapped

onto 16 mesh nodes. Data sharing between the sub tasks can be done by passing data between the

cores using a message passing API provided in the Epiphany SDK or by explicitly writing to

global shared memory.

15 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 3: Matrix Multiplication Data Flow

The parallel matrix multiplication completes in √P steps, (where P is the number of processors)

with each matrix multiplication task operating on data sets that are of size √P x √P. At each step

of the process, contributions to the local C matrix accumulate in each task, after which the local

A matrix moves down and the local B matrix moves to the right. The entire example can be

completed using standard ANSI programming constructs. Epiphany run-time functions are

provided to simplify multicore programming, but their use is not mandatory. The architecture

allows programmers to innovate at all levels. For more information on the inter-processor

communication API, please refer to the Epiphany SDK Reference Manual.

Given the algorithm above, a 16-core Epiphany implementation operating at 1GHz can complete

a 128x128 matrix multiply in 2ms while achieving 90% of the theoretical peak performance. The

matrix multiplication algorithm in this example scales to thousands of cores and demonstrates

how the Epiphany architecture’s performance scales linearly with the number of cores in the

system when proper data distribution and programming models are used.

A 03 , B 30 A 12 , B 20 A 21 , B 10 A 30 , B 00

A 02 , B 21 A 11 , B 11 A 20 , B 01 A 33 , B 31

A 01 , B 12 A 10 , B 02 A 23 , B 32 A 32 , B 22

A 13 , B 33 A 22 , B 23 A 31 , B 13 A 00 , B 03

A

B

16 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

3 Software Development Environment

The Epiphany multicore architecture supports popular open-source ANSI C/C++ software

development flows, using GNU GCC and GDB. The highly optimized GCC compiler enables

acceptable real-time performance from pure ANSI-C/C++ applications without having to write

assembly code for the vast majority of applications. The Epiphany SDK includes:

 ANSI-C/C++ GCC compiler

 OpenCL SDK

 Multicore GDB debugger

 Eclipse based multicore IDE

 Runtime library

 Fast functional single core simulator

Figure 4 shows the complete software stack of the Epiphany software development environment.

Figure 4: Epiphany Software Development Stack

17 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

4 Memory Architecture

4.1 Memory Address Map

The Epiphany architecture uses a single, flat address space consisting of 232 8-bit bytes. Byte

addresses are treated as unsigned numbers, running from 0 to 232 – 1. This address space is

regarded as consisting of 230 32-bit words, each of whose addresses is word-aligned, which

means that the address is divisible by 4. The word whose word-aligned address is A consists of

the four bytes with addresses A, A+1, A+2 and A+3. Each mesh node has a local, aliased, range

of memory that is accessible by the mesh node itself starting at address 0x0 and ending at

address 0x00007FFF. Each mesh node also has a globally addressable ID that allows

communication with all other mesh nodes in the system. The mesh-node ID consists of 6 row-ID

bits and 6 column-ID bits situated at the upper most-significant bits (MSBs) of the address space.

The complete memory map for the 32 bit Epiphany architecture is shown in Figure 5.

Figure 5: Epiphany Global Address Map

RESERVED

INTERNAL MEMORY BANK 1

INTERNAL MEMORY BANK 0

INTERNAL MEMORY BANK 2

INTERNAL MEMORY BANK 30x00006000

0x00004000

0x00002000

0x00000000

MEMORY-MAPPED REGISTERS0x000F0000

LOCAL MEMORY 0x00000000

CORE_0_1

CORE_0_2

CORE_0_3

...

CORE_0_63

CORE_1_1

CORE_1_2

CORE_1_3

...

CORE_1_63

CORE_1_0

CORE_63_1

CORE_63_2

CORE_63_3

...

CORE_63_63

CORE_63_0

...

0x00100000

0x00200000

0x00300000

0x03F00000

0x04000000

0x04100000

0x04200000

0x04300000

0x07F00000

0xFC100000

0xFC200000

0xFC300000

0xFFF00000

0xFC000000LOCAL SPACE

GLOBAL SPACE

18 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Data and code can be placed anywhere in the memory space or in external space, except for the

memory-mapped register space and reserved space, but performance is optimized when the data

and code are placed in separate local-memory banks.

Figure 6 shows a 64-node region of the memory map, highlighting the upper address range of

each mesh node and its corresponding mnemonic (row, column) coordinate. Note that the

memory map laid out as a mesh to match the natural geometrical mapping of Epiphany’s

Network-On-Chip. The dotted line in Figure 6 shows the I/O boundary and memory map for a

hypothetical system consisting of four 16-core chips connected in a glue-less fashion on a board.

The 32-bit address map supports up to 4095 cores in a single shared memory system, but

practically some of the memory space will probably be dedicated to off-chip SDRAM and

memory mapped IO peripherals.

Figure 6: Epiphany Shared Memory Map

0x820
(32,32)

0x821
(32,33)

0x822
(32,34)

0x823
(32,35)

0x824
(32,36)

0x825
(32,37)

0x826
(32,38)

0x827
(32,39)

0x860
(33,32)

0x861
(33,33)

0x862
(33,34)

0x863
(33,35)

0x864
(33,36)

0x865
(33,37)

0x866
(33,38)

0x867
(33,39)

0x8A0
(34,32)

0x8A1
(34,33)

0x8A2
(34,34)

0x8A3
(34,35)

0x8A4
(34,36)

0x8A5
(34,37)

0x8A6
(34,38)

0x8A7
(34,39)

0x8E0
(35,32)

0x8E1
(35,33)

0x8E2
(35,34)

0x8E3
(35,35)

0x8E4
(35,36)

0x8E5
(35,37)

0x8E6
(35,38)

0x8E7
(35,39)

0x920
(36,32)

0x921
(36,33)

0x922
(36,34)

0x923
(36,35)

0x924
(36,36)

0x925
(36,37)

0x926
(36,38)

0x927
(36,39)

0x960
(37,32)

0x961
(37,33)

0x962
(37,34)

0x963
(37,35)

0x964
(37,36)

0x9A5
(37,37)

0x9A6
(37,38)

0x9A7
(37,39)

0x9A0
(38,32)

0x9A1
(38,33)

0x9A2
(38,34)

0x9A3
(38,35)

0x9A4
(38,36)

0x9A5
(38,37)

0x9A6
(38,38)

0x9A7
(38,39)

0x9E0
(39,32)

0x9E1
(39,33)

0x9E2
(39,34)

0x9E3
(39,35)

0x9E4
(39,36)

0x9E5
(39,37)

0x9E6
(39,38)

0x9E7
(39,39)

19 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Each CPU can be accessed by any other CPU by specifying the appropriate row-column fields of

the address in a memory read or write transactions. The startup cost for node-to-node

communication is zero clock cycles. From a programmer's viewpoint, the only difference

between on-chip communication and off-chip communication is in transaction bandwidth and

latency. In the Figure 6 memory map, if core (32,32) wants to perform a read operation from core

(39,39), it would send a read address with the upper bits 0x9e7 and specify a return address with

upper bits 0x820 to the mesh network. The network takes care of the rest, making sure that the

read request propagates to the read destination and that data is correctly returned to the mesh

node that initiated the request.

4.2 Memory Order Model

All read and write transactions from local memory follow a strong memory-order model. This

means that the transactions complete in the same order in which they were dispatched by the

program sequencer.

For read and write transactions that access non-local memory, the memory order restrictions are

relaxed to improve performance. This is called a weak memory-order model. The following

section explains the background of a weak memory-order model, how it is used by the Epiphany

architecture, and how it affects determinism in the system. The relaxation of synchronization

between memory-access instructions and their surrounding instructions is referred to as weak

ordering of loads and stores. Weak ordering implies that the timing of the actual completion of

the memory operations—even the order in which these events occur—may not align with how

they appear in the sequence of the program source code. The only guarantees are:

 Load operations complete before the returned data is used by a subsequent instruction.

 Load operations using data previously written use the updated values.

 Store operations eventually propagate to their ultimate destination.

Weak ordering has some side-effects that programmers must be aware of in order to avoid

improper system operation. When writing to or reading from non-local memory locations, such

as off-chip I/O device registers and SDRAM, the order in which read and write operations

complete is often significant, but is not guaranteed by the underlying hardware. To ensure that

these effects do not occur in code that requires strong ordering of load and store operations, use

run-time synchronization calls with order-dependent memory sequences.

20 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 1 shows the ordering guaranteed in the Epiphany architecture. Instruction #1 refers to the

first instruction in a sequential program, and instruction #2 refers to any instruction following the

first one in that same program.

Table 1: Memory Transaction Ordering Rule

First Transaction Second Transaction Deterministic Order

Read from CoreX Read from CoreX Yes

Write to CoreX Write to CoreX Yes

Write to CoreX Read from CoreX No

Read from CoreX Write to CoreX Yes

Read from CoreX Read from CoreY Yes

Read from CoreX Write to CoreY Yes

Write to CoreX Write to CoreY No!

Write to CoreX Read from CoreY No!

4.3 Endianness

The Epiphany architecture is a little-endian memory architecture. The figures below show how

instructions and data are placed in memory with respect to byte order.

Data In Register Data In Memory

B3 B2 B1 B0 B3 B2 B1 B0

 Addr+3 Addr+2 Addr+1 Addr+0

32-Bit Instruction In Register 32-Bit Instruction In Memory

B3 B2 B1 B0 B3 B2 B1 B0

 Addr+3 Addr+2 Addr+1 Addr+0

16-Bit Instruction In Register 16-Bit Instruction In Memory

B1 B0 B1 B0 B1 B0 B1 B0

 Addr+3 Addr+2 Addr+1 Addr+0

21 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

4.4 Load/Store Alignment Restrictions

The Epiphany architecture expects all memory accesses to be suitably aligned: doubleword

accesses must be doubleword-aligned, word accesses must be word-aligned, and halfword

accesses must be halfword-aligned. Table 2 summarizes the restrictions on the three LSBs of the

address used to access memory for each type of memory transaction. An “x” in the address field

refers to a bit that can be any value. Load and store transactions with unaligned addresses

generate a software exception that is handled by the node's interrupt controller. For unaligned

write accesses, data is still written to memory, but the data written will be incorrect. Unaligned

reads return values to the register file before an unaligned exception occur.

Table 2: Load and Store Memory-Alignment Restrictions

Data Type Address[2:0]

Byte Xxx

Halfword xx0

Word x00

Doubleword 000

4.5 Program-Fetch Alignment Restrictions

All instructions must be aligned on half-word boundaries.

22 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

5 eMesh Network-On-Chip

The eMesh Network-On-Chip is illustrated in Figure 2 and in Figure 7.

5.1 Network Topology

The eMesh network has a 2D mesh topology with only nearest-neighbor direct connections.

Every router in the mesh is connected to the north, east, west, south, and to a mesh node. Write

transactions move through the network, with a latency of 1.5 clock cycles per routing hop. A

transaction traversing from the left edge to right edge of a 64- core chip would thus take 12 clock

cycles. The edges of the 2D array can be connected to non-Epiphany interface modules, such as

SRAM modules, FIFOs, I/O link ports, or standard buses such as AHB and AXI. Alternatively,

the mesh edge connections can be left unconnected if not needed in the system.

The eMesh Network-on-Chip consists of three separate and orthogonal mesh structures, each

serving different types of transaction traffic:

 cMesh: Used for write transactions destined for an on-chip mesh node. The cMesh network

connects a mesh node to all four of its neighbors and has a maximum bidirectional

throughput of 8 bytes/cycle in each of the four routing directions. At an operating frequency

of 1GHz, the cMesh network has a total throughput of more than 0.5 Terabit/sec.

 rMesh: Used for all read requests. The rMesh network connects a mesh node to all four of its

neighbors and has a maximum throughput of 1 read transaction every 8 clock cycles in each

routing direction. .

 xMesh: Used for write transactions destined for off-chip resources and for passing through

transactions destined for another chip in a multi-chip system configuration. The xMesh

network allows an array of chips to be connected in a mesh structure without glue logic. The

xMesh network is split into a south-north network and an east-west network. The maximum

throughput of the mesh depends on the available-off chip I/O bandwidth. Current silicon

versions of the Epiphany architecture can sustain a total off-chip bandwidth of 8GB/sec.

Figure 7 shows a connection diagram of the three mesh networks. The example shows an

Epiphany chip configuration with 16 mesh nodes per chip. Each mesh node is connected to all

three mesh networks. The only difference between larger-array chips and smaller-array chips is

in the divisor placement between the on-chip and off-chip transaction routing model. The off-

chip boundary is indicated by a dotted line in the figure.

23 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 7: eMesh™ Network Topology

The cMesh on-chip network has significantly lower latency and higher bandwidth than the

xMesh network, so tasks with significant inter-task communication should be placed together on

the same chip for optimal performance.

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

Mesh
Node

xMesh
rMesh

cMesh

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

24 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Key features of the eMesh network include:

 Optimization of Write Transactions over Read Transactions. Writes are approximately 16x

more efficient than reads for on-chip transactions. Programs should use the high write-

transaction bandwidth and minimize inter-node, on-chip read transactions.

 Separation of On-Chip and Off-Chip Traffic. The separation of the xMesh and cMesh

networks decouples off-chip and on-chip communication, making it possible to write on-chip

applications that have deterministic execution times regardless of the types of applications

running on neighboring nodes.

 Deadlock-Free Operation. The separation of read and write meshes—together with a fixed

routing scheme of moving transactions first along rows, then along columns—guarantees that

the network is free of deadlocks for all traffic conditions.

 Scalability. The implementation of the eMesh network allows it to scale to very large arrays.

The only limitation is the size of the address space. For example, a 32-bit Epiphany

architecture allows for building shared memory systems with 4,096 processors and a 64-bit

architecture allows for scaling up to 18 billion processing elements in a shared memory

system.

5.2 Routing Protocol

The upper 12 bits of the destination address are used to route transactions to their destination.

Along the way, these upper bits—6 bits for row and 6 bits for column—are compared to the row-

column ID of each mesh node in the routing path. Transactions are routed east if the destination-

address column tag is less than the column ID of the current router node, and they are routed

west if the destination-address column tag is greater than the column ID of the current router

node.

Transactions first complete routing along a single row before traveling in a column direction.

When the destination-address column tag matches the mesh-node column ID, a similar

comparison is made in the row direction to determine whether the transaction should be routed to

the south or to the north. The transaction routing continues until both the row tag and column tag

for the destination match the row and column ID of the current mesh node. Then, the transaction

is routed into the network interface of mesh node.

25 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 3 summarizes the routing rules for the combinations of mesh-node IDs and transaction

addresses.

Table 3: Routing Protocol Summary

Address-Row Tag Address-Column Tag Routing Direction

Greater Than Mesh-Node Column Don’t Care East

Less Than Mesh-Node Column Don’t Care West

Matches Mesh-Node Column Less Than Mesh-Node Row North

Matches Mesh-Node Column Greater Than Mesh-Node Row South

Matches Mesh-Node Column Matches Mesh-Node Row Into Mesh Node

5.3 Read Transactions

Read transactions are non-blocking and are initiated as posted read requests to an address within

the mesh fabric. A read request is sent out on the rMesh network and propagates towards the

mesh node or external resource using the routing algorithm described in the previous section.

The source address is sent along with the read transaction on the outgoing read request. After the

data has been read from the read address, the data is returned to the source address on the cMesh

or xMesh network. The process is completely non-blocking, allowing transparent interleaving of

read transactions from all mesh nodes. Figure 8 shows an example.

26 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 8: eMesh™ Routing Example

5.4 Direct Inter-Core Communication

Figure 9 shows how the shared-memory architecture and the eMesh network work productively

together. In the example, a dot-product routine writes its result to a memory location in another

mesh node. The only thing required to pass data from one node to another is the setting of a

pointer. The hardware decodes the transaction and determines whether it belongs to the local

node’s memory or to another node’s memory. Since the on-chip cMesh network can accept write

transactions at the same rate that a processor core can dispatch them, the example runs without

pipeline stalls, despite executing a node-to-node write in the middle of the program stream.

Using this method, programmers can reduce the cost of write-based inter-node communication to

zero.

1. Core 32,32 sends a read

request to core 39,39 and

specifies its own core id(32,32)

as a return (source) address

0x821
(32,33)

0x822
(32,34)

0x823
(32,35)

0x824
(32,36)

0x825
(32,37)

0x826
(32,38)

0x827
(32,39)

0x860
(33,32)

0x861
(33,33)

0x862
(33,34)

0x863
(33,35)

0x864
(33,36)

0x865
(33,37)

0x866
(33,38)

0x867
(33,39)

0x8A0
(34,32)

0x8A1
(34,33)

0x8A2
(34,34)

0x8A3
(34,35)

0x8A4
(34,36)

0x8A5
(34,37)

0x8A6
(34,38)

0x8A7
(34,39)

0x8E0
(35,32)

0x8E1
(35,33)

0x8E2
(35,34)

0x8E3
(35,35)

0x8E4
(35,36)

0x8E5
(35,37)

0x8E6
(35,38)

0x8E7
(35,39)

0x920
(36,32)

0x921
(36,33)

0x922
(36,34)

0x923
(36,35)

0x924
(36,36)

0x925
(36,37)

0x926
(36,38)

0x927
(36,39)

0x960
(37,32)

0x961
(37,33)

0x962
(37,34)

0x963
(37,35)

0x964
(37,36)

0x9A5
(37,37)

0x9A6
(37,38)

0x9A7
(37,39)

0x9A0
(38,32)

0x9A1
(38,33)

0x9A2
(38,34)

0x9A3
(38,35)

0x9A4
(38,36)

0x9A5
(38,37)

0x9A6
(38,38)

0x9A7
(38,39)

0x9E0
(39,32)

0x9E1
(39,33)

0x9E2
(39,34)

0x9E3
(39,35)

0x9E4
(39,36)

0x9E5
(39,37)

0x9E6
(39,38)

0x9E7
(39,39)

0x820
(32,32)

2.Along the path, routing

nodes compare the

transaction address to

the routers hardcoded ID

and decide if the

transaction should be

sent north, east, south,

or west.

3. Core 39,39 receives

read transaction,

fetches data from

memory and returns

the data to core 32,32

(source) using the

cMesh or xMesh

network.

27 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 9: Pointer Manipulation Example

C-CODE ASSEMBLY

//VecA array at 0x82002000

//VecB array at 0x82004000

//remote_res at 0x92004000

for (i=0; i<100; i++){

 loc_sum+=vecA[i]*vecB[i];

}

remote_res=loc_sum;

//R0=pointer to VecA

//R2=pointer to VecB

//R6=pointer to remote_res

//R4=loc_sum;

 MOV R5,#100;

_L: LDR R1,[R0],#1;

 LDR R3,[R2],#1;

 FMADD R4,R1,R3;

 SUB R5,R5,#1;

 BNE _L;

 STR R4,[R6];

5.5 Arbitration Scheme

The routers at every node in all three mesh networks contain round-robin arbiters. The arbitration

hardware, in combination with the routing topologies, ensures that there are no deadlocks. The

round-robin scheme also ensures that there is some split of available bandwidth between the

competing agents on the network. The large on-chip bandwidth and non-blocking nature of the

write network guarantees that no agent needs to wait more than a few clock cycles for access to

the mesh. Applications requiring exact and deterministic bandwidth can implement network-

resource interleaving in software.

5.6 Data Sizes and Alignment

The eMesh network supports byte, half-word, word, or double-word atomic transactions. Mesh

data is always aligned to the least-significant bits (LSBs). Maximum bandwidth is obtained with

double word transactions. All transactions should have addresses aligned according to the

transaction data size.

28 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

5.7 Multicast Routing

The eMesh supports efficient broadcasting of data to multiple cores through a special “multicast”

routing mode. To use the multicast routing method, set the CTRLMODE field in the CONFIG

register to 0011 in the master core sending eMesh write transactions. In multicast mode, the

normal eMesh routing algorithm described in 5.2 is overridden and the transaction is instead

routed radially outwards from the transmitting node. The write destination address is compared

to the value found in the MULTICAST register at each eMesh node. If the eMesh write

transaction destination address matches the MULTICAST register, the transaction enters the

node.

5.8 Detour Routing Support

The Epiphany-IV support modifying the eMesh routing at each node on a per mesh basis using

the CMESHROUTE, XMESHROUTE, and RMESHSROUTE registers. Using these registers,

it’s possible to block or reroute transactions.

29 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

6 Processor Node Subsystem

6.1 Processor Node Overview

Figure 10 shows the components at each processor node, which include: an eCore RISC CPU,

multi-bank local memory, multicore-optimized DMA engine, event monitor, and network

interface. The node connects to the Epiphany eMesh network through the network interface, a

single point of access.

Figure 10: Processor Node Overview

eCore

Program

Sequencer

DMA

eCore

Register

File

Mem0

64xN

Mem1

64xN

Mem2

64xN

Mem3

64xN

rMesh cMesh

xMeshcMeshrMesh

mesh

rf
fetch

dma
mem0
mem1
mem2
mem3

Network Interface

EVENT

TIMER FPU IALU

eCore

Debug

Interrrupt

Controller

30 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

eCore CPU

The heart of each processor node is the eCore CPU, a floating-point RISC microprocessor

designed specifically for multicore processing and tuned to achieve a balance between

performance, energy efficiency, and ease-of-use for many real-time applications. This balance of

performance and data throughput makes performance levels close to 2 GFLOPS attainable in a

large number of signal-processing kernels.

Local Memory

A local memory system supports simultaneous instruction fetching, data fetching, and multicore

communication. To accomplish this, the local memory is divided into four 8-byte-wide banks,

each 8KB in size.

On every clock cycle, the following operations can occur:

 64 bits of instructions can be fetched from memory to the program sequencer.

 64 bits of data can be passed between the local memory and the CPU’s register file.

 64 bits can be written into the local memory from the network interface.

 64 bits can be transferred from the local memory to the network using the local DMA.

In aggregate, the local memory supports 32 bytes of memory bandwidth per clock cycle,

equivalent to 32 GB /sec at 1GHz. To maximize bandwidth, use doubleword transactions and

place data and instructions so that two masters never access the same memory bank

simultaneously.

Direct Memory Access (DMA) Engine

The DMA engine accelerates data movement between processor nodes within the eMesh fabric.

The engine was custom designed for the eMesh fabric and operates at the same speed as the

eMesh, allowing it to generate a double word transaction on every clock cycle.

Event Timers

Each processor node has two 32-bit event timers that can operate independently to monitor key

events within the processor node. The timers can be used for program debug, program

optimization, load balancing, traffic balancing, timeout counting, watchdog timing, system time,

and numerous other purposes.

31 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Network Interface

The network interface connects all other parts of the processor node to the eMesh network-on-

chip. The network interface decodes load and store instructions, program counter addresses, and

DMA-transaction addresses. It also decides whether a transaction is destined for the processor

node itself (in which case bits [31:20] of the address are all zero) or for the mesh network.

Arbitration is performed if more than one transaction is going out, in the same clock cycle, on

one of the three network meshes. The network operates at the same frequency as the CPU and

can output one transaction on the network per clock cycle. For double word write transactions, 8

bytes can be pushed onto the network on every clock cycle without stalling the pipeline.

Memory Protection Unit

The memory protection unit provides the ability guard against unintended access of specific

memory regions or cores.

6.2 Mesh-Node Crossbar Switch

The local memory in a processor node is split into 4 banks that are 8 bytes wide. The banks can

be accessed in 1-byte transfers or in 8-byte transfers. All banks can be accessed once per clock

cycle and operate at the same frequency as the CPU. The memory system in a single processor

node thus supports 32GB/sec memory bandwidth at an operating frequency of 1 GHz.

Four masters can access the processor node local memory simultaneously:

 Instruction Fetch: This master fetches one 8-byte instruction from local memory into the

instruction decoder of the program sequencer. The CPU’s maximum instruction issue rate is

two 32-bit instructions per clock cycle, so in heavily loaded program conditions, the program

sequencer can access a memory bank on every clock cycle. The instruction-fetch logic can

also fetch instructions directly from external memory or from other cores within the

Epiphany fabric.

 Load/Store: This master copies data between the register file and a memory bank or external

memory. Loads and stores can occur as 8-, 16-, 32-, or 64-bit transfers.

 DMA: Once set up, a DMA channel can work completely independently from the node’s

CPU to move data in and out of the node. Valid data-transfer sizes are 8, 16, 32, or 64 bits.

 External: An external agent may access the local memory to read or write certain address

locations. Also, whenever the node initiates a read from an external memory location, the

32 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

transaction comes back as a write transaction that cannot be differentiated from an externally

generated transaction.

The figures below show examples of maximizing memory bandwidth by assigning data and code

to memory banks within the 32 KB local memory. Figure 11 shows a program memory layout

optimized for memory size.

Figure 12 shows a program memory layout using a ping-pong configuration that is optimized for

program speed.

Figure 11: Program Memory Layout Optimized for Size

Figure 12: Program Memory Layout Optimized for Speed

MEM0
“CODE”

PROGRAM
INSTRUCTION

FETCH

MEM1
“INPUT DATA”

EXTERNAL
AGENT

PROGRAM
DATA LOAD

MEM2
“OUTPUT DATA”

WORKING
DATA

BUFFER

DMA DATA
OUT TO

NEXT CORE

MEM3
“STACK”

PROGRAM
TEMPORARY
LOAD-STORE

MEM1
“DATA0”

EXTERNAL
AGENT

PROGRAM
DATA LOAD

DMA DATA
OUT TO

NEXT CORE

MEM2
“DATA1”

EXTERNAL
AGENT

PROGRAM
DATA LOAD

DMA DATA
OUT TO

NEXT CORE

MEM0
“CODE”

PROGRAM
INSTRUCTION

FETCH

MEM3
“STACK”

PROGRAM
TEMPORARY
LOAD-STORE

33 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

6.3 Mesh-Node Arbitration

The crossbar switch within a processor node implements fixed-priority arbitration. The arbiter is

needed whenever there is a potential for a shared-resource conflict. Table 4 illustrates the access

priority for the different masters within the processor node for different shared resources.

Table 4: Processor node Access Priorities

Shared

Resource

Priority #1 Priority #2 Priority #3 Priority #4 Priority #5

Mem0 cMesh rMesh Load-Store Program Fetch DMA

Mem1 cMesh rMesh Load-Store Program Fetch DMA

Mem2 cMesh rMesh Load-Store Program Fetch DMA

Mem3 cMesh rMesh Load-Store Program Fetch DMA

rMesh Load-Store Program Fetch DMA n/a n/a

cMesh rMesh Load-Store DMA n/a n/a

xMesh rMesh Load-Store DMA n/a n/a

Register File cMesh rMesh Load-Store n/a n/a

34 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7 eCore CPU

7.1 Overview

The different sub components of the eCore CPU are illustrated in Figure 13. The processor

includes a general purpose program sequencer, large general purpose register file, integer ALU

(IALU), floating point unit (FPU), debug unit, and interrupt controller.

Figure 13: eCore CPU Overview

Program Sequencer

The program sequencer supports all standard program flows for a general-purpose CPU,

including:

 Loops: One sequence of instructions is executed several times. Loops are implemented using

general-purpose branching instructions, in which case the branching can be done by label or

by register.

 Functions: The processor temporarily interrupts the sequential flow to execute instructions

from another part of the program. The CPU supports all C-function calls, including recursive

functions.

64-Word
Register File

Floating-Point Unit
(FPU)

Integer ALU
(IALU)

Program
Sequencer

Interrupt
Controller

Debug
Unit

35 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

 Jumps: Program flow is permanently transferred to another part of the program. A jump by

register instruction allows program flow to be transferred to any memory location in the 32-

bit address space that contains valid program code.

 Interrupts: Interrupt servicing is handled by the interrupt controller, which redirects the

program sequencer to an interrupt handler at a fixed address associated with the specific

interrupt event. Before entering the interrupt service routine, the old value of the program

counter is stored so that it can be retrieved later when the interrupt service routine finishes.

 Idle: A special instruction that puts the CPU into a low-power state waiting for an interrupt

event to return the CPU to normal execution. This idle mode is useful, for example, in signal-

processing applications that are real-time and data-driven.

 Linear: In linear program flows, the program sequencer continuously fetches instructions

from memory to ensure that the processor pipeline is fed with a stream of instructions

without stalling.

Register File

The 9-port 64-word register file provides operands for the IALU and FPU and serves as a

temporary power-efficient storage place instead of memory. Arithmetic instructions have direct

access to the register file but not to memory. Movement of data between memory and the register

file is done through load and store instructions. Having a large number of registers allows more

temporary variables to be kept in local storage, thus reducing the number of memory read and

write operations. The flat register file allows user to balance resources between floating-point

and integer ALU instructions as any one of the 64 registers be used by the floating-point unit or

IALU, without restrictions.

In every cycle, the register file can simultaneously perform the following operations:

 Three 32-bit floating-point operands can be read and one 32-bit result written by FPU.

 Two 32-bit integer operands can be read and one 32-bit result written by IALU.

 A 64-bit doubleword can be written or read using a load/store instruction.

Integer ALU

The Integer ALU (IALU) performs a single 32-bit integer operation per clock cycle. The

operations that can be performed are: data load/store, addition, subtraction, logical shift,

36 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

arithmetic shift, and bitwise operations such as XOR and OR. The IALU’s single-cycle

execution means the compiler or programmer can schedule integer code without worrying about

data-dependency stalls. All IALU operations can be performed in parallel with floating-point

operations as long as there are no register-use conflicts between the two instructions. Pre- and

post-modify addressing and doubleword load/store capability enables efficient loading and

storing of large data arrays.

Floating-Point Unit

The floating-point unit (FPU) complies with the single precision floating point IEEE754

standard, executes one floating-point instruction per clock cycle, supports round-to-nearest even

and round-to-zero rounding modes, and supports floating-point exception handling. The

operations performed are: addition, subtraction, fused multiply-add, fused multiply-subtract,

fixed-to-float conversion, absolute, float-to-fixed conversion.

Operands are read from the 64-entry register file and are written back to the register file at the

end of the operation. No restrictions are placed on register usage. Regular floating-point

operations such as floating-point multiply/add read two 32-bit registers and produce a 32-bit

result. A fused multiply-add instruction takes three input operands and produces a single

accumulated result. A large number of floating-point signal-processing algorithms use the

multiply-accumulate operations, and for these applications the fused operations has the potential

of reducing the number clock cycles significantly.

Interrupt Controller

The interrupt controller supports up to 10 interrupts and exceptions, with full support for nested

interrupts and interrupt masking.

Hardware Loops

Efficient zero overhead loops are supported through built in hardware support.

Debug Unit

The debug unit provide multicore debug capabilities such as: single stepping, breakpoints, halt,

and resume. For a complete description of supported debug features, please refer to the Epiphany

SDK Reference Manual.

37 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.2 Data Types

The CPU architecture supports the following integer data types:

 Byte: 8 bits

 Half-Word: 16 bits (must be aligned on 2 byte boundary in memory)

 Word: 32 bits (must be aligned on 4 byte boundary in memory)

 Double: 64 bits (must be aligned on 8 byte boundary in memory)

The data types can be of signed or unsigned format, as shown below. All register-register

operations operate on word types only, but data can be stored in memory as any size. For

example, an array of bytes can be stored in memory by an external host, read into the register file

using the byte load instruction, operated on as 32-bit integers, and then can stored back into

memory using the byte store instruction.

Signed Integer Representation

msb lsb

-aN-1∙2
N-1 aN-2∙2

N-2 aN-3∙2
N-3 aN-4∙2

N-4 aN-5∙2
N-5 a0∙2

0

Unsigned Integer Representation

msb lsb

aN-1∙2
N-1 aN-2∙2

N-2 aN-3∙2
N-3 aN-4∙2

N-4 aN-5∙2
N-5 a0∙2

0

Floating-Point Data Types

The FPU supports the IEEE754 32-bit single-precision floating-point data format, shown below:

SIGN EXP[7:0] MANTISSA[22:0]

A number in this floating-point format consists of a sign bit, s, a 24-bit mantissa, and an 8-bit

unsigned-magnitude exponent, e. For normalized numbers, the mantissa consists of a 23-bit

fraction, f, and a hidden bit of 1 that is implicitly presumed to precede f22 in the mantissa. The

binary point is presumed to lie between this hidden bit and f22. The least-significant bit (LSB) of

the fraction is f0; the LSB of the exponent is e0. The hidden bit effectively increases the

38 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

precision of the floating-point mantissa to 24 bits from the 23 bits actually stored in the data

format. This bit also ensures that the mantissa of any number in the IEEE normalized number

format is always greater than or equal to 1 and less than 2. The exponent, e, can range between 1

≤ e ≤ 254 for normal numbers in the single-precision format. This exponent is biased by +127

(254/2). To calculate the true unbiased exponent, 127 must be subtracted from e.

The IEEE standard also provides for several special data types in the single-precision floating-

point format, including:

 An exponent value of 255 (all ones) with a nonzero fraction is a not-a-number (NAN). NANs

are usually used as flags for data flow control, for the values of uninitialized variables, and

for the results of invalid operations such as 0 ∗ ∞.

 Infinity is represented as an exponent of 255 and a zero fraction. Because the number is

signed, both positive and negative infinity can be represented.

 Zero is represented by a zero exponent and a zero fraction. As with infinity, both positive

zero and negative zero can be represented. The IEEE single-precision floating-point data

types supported by the processor and their interpretations are summarized in Table 5.

Table 5: IEEE Single-Precision Floating-Point Data Types

Type Sign Exponent Mantissa Value

NAN X 255 Nonzero Undefined

Infinity S 255 Zero (-1)S * Infinity

Normal S 1 <= e <=254 Any (-1)S * (1.M22-0) 2
e-127

Denormal S 0 Any (-1)S * Zero

Zero S 0 0 (-1)S * Zero

39 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The CPU is compatible with the IEEE-754 single-precision format, with the following

exceptions:

 No support for inexact flags.

 NAN inputs generate an invalid exception and return a quiet NAN. When one or both of the

inputs are NANs, the sign bit of the operation is set as an XOR of the signs of the input sign

bits.

 Denormal operands are flushed to zero when input to a computation unit and do not generate

an underflow exception. Any denormal or underflow result from an arithmetic operation is

flushed to zero and an underflow exception is generated.

 Round-to-±infinity is not supported.

By default, the FPU performs round-to-nearest even IEEE754 floating-point rounding. In this

rounding mode, the intermediate result is rounded to the nearest complete number that fits within

the final 32-bit floating-point data format. If the result before rounding is exactly halfway

between two numbers in the destination format (differing by an LSB), the rounded result is that

number which has an LSB equal to zero. Statistically, rounding up occurs as often as rounding

down, so there is no large sample bias.

The FPU supports truncation rounding when the rounding mode bit is set in the Core

Configuration Register. In truncate rounding mode, the intermediate mantissa result bits that are

not within the first 23 bits are ignored. Over a large number of accumulations, there can be a

large sample bias in the computation, so truncation rounding mode should be avoided for most

applications.

The FPU detects overflow, underflow, and invalid conditions during computations. If one of

these conditions is detected, a software exception signal is sent to the interrupt controller to start

an exception handling routine.

Double-precision floating-point arithmetic is emulated using software libraries and should be

avoided if performance considerations outweigh the need for additional precision.

40 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.3 Local Memory Map

Table 6 summarizes the memory map of the eCore CPU local memory.

Table 6: eCore Local Memory Map Summary

Name Start Address End Address Size

(Bytes)

Comment

Interrupt Vector

Table

0x00 0x3F 64 Local Memory

Bank 0 0x40 0x1FFF 8KB-64 Local Memory Bank

Bank 1 0x2000 0x3FFF 8KB Local Memory Bank

Bank 2 0x4000 0x5FFF 8KB Local Memory Bank

Bank 3 0x6000 0x7FFF 8KB Local Memory Bank

Reserved 0x8000 0xEFFFF n/a Reserved for future

memory expansion

Memory Mapped

Registers

0xF0000 0xF07FF 2048 Memory mapped

register access

Reserved 0xF0800 0xFFFFF n/a N/A

All registers are memory-mapped and can be accessed by external agents through a read or write

of the memory address mapped to that register or through a program executing MOVTS/MOVFS

instructions. A complete listing of all registers and their corresponding addresses can be found in

Appendix B. The eCore complete local memory space is accessible by any master within an

Epiphany system by adding 12-bit processor node ID offset to the local address locations.

Reading directly from the general-purpose registers by an external agent is not supported while

the CPU is active. Unmapped bits and reserved bits within defined memory-mapped registers

should be written with zeros if not otherwise specified.

7.4 General Purpose Registers

The CPU has a general-purpose register file containing 64 registers shown in Table 7. General-

purpose registers have no restrictions on usage and can be used by all instructions in the

Epiphany instruction-set architecture. The only general purpose register written implicitly by an

41 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

instruction is register R14, used to save a PC on a functional call. The register convention shown

in Table 9 shows the register usage assumed by the compiler to ensure safe design and

interoperability between different libraries written in C and or assembly. The registers do not

have default values.

Table 7: General-Purpose Registers

Name Synonym Role in the Procedure Call Standard Saved By

R0 A1 Argument/result/scratch register #1 Caller saved

R1 A2 Argument/result/scratch register #2 Caller saved

R2 A3 Argument/result/scratch register #3 Caller saved

R3 A4 Argument/result/scratch register #4 Caller saved

R4 V1 Register variable #1 Callee Saved

R5 V2 Register variable #2 Callee Saved

R6 V3 Register variable #3 Callee Saved

R7 V4 Register variable #4 Callee Saved

R8 V5 Register variable #5 Callee Saved

R9 V6/SB Register variable #6/Static base Callee Saved

R10 V7/SL Register Variable #7/Stack limit Callee Saved

R11 V8/FP Variable Register #8/Frame Pointer Callee Saved

R12 - Intra-procedure call scratch register Caller saved

42 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

R13 SP Stack Pointer N/A

R14 LR Link Register Callee Saved

R15 General Use Callee Saved

R16-R27 General use Caller saved

R28-R31 Reserved for constants N/A

R32-R43 General use Callee saved

R44-R63 General Use Caller saved

The first four registers, R0-R3 (or A1-A4), are used to pass arguments into a subroutine and to

return a result from a function. They can also be used to hold intermediate values within a

function.

The registers R4-R8, R10, R11 (or V1-V5, V7-V8) are used to hold the values of a routine's local

variables. The following registers are set implicitly by certain instructions and architecture

convention dictates that they have fixed use. For more information regarding register usage,

please refer to the Epiphany SDK reference manual.

 Stack Pointer: Register R13 is a dedicated as a stack pointer (SP).

 Link Register: The link register, LR (or R14), is automatically written by the CPU when the

BL or JALR instruction is used. The register is automatically read by the CPU when the RTS

instruction is used. After the linked register has been saved onto the stack, the register can be

used as a temporary storage register.

43 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.5 Status Flags

The Core Status Register flags updated by the different instructions include:

ACTIVE

When set, it indicates that core is currently active. The core is inactive at reset and is activated by

an external agent asserting an interrupt. Once activated, the core stays active until the user asserts

the IDLE instruction, at which time the core enters a standby state. During the standby state, core

clocks are disabled and the power consumption is minimized. Applications that need minimal

power consumption should use the IDLE instruction to put the core in a standby state and use

interrupts to activate the core when needed.

GID

When set it indicates that all external interrupts are blocked. The bit is set immediately on an

interrupt occurring, giving the interrupt service routine enough time to save critical registers

before another higher priority interrupt can occur. The flag is cleared by executing an RTI

instruction, indicating the end of the service routine or by a GIE instruction indicating it is safe to

allow a higher priority to begin if one is currently latched in the ILAT register.

WAND

A multicore flag set by the WAND instruction. The WAND flag is an output of the core that gets

“ANDed” together with the WAND flags from other cores to produce a global WAND interrupt

when cores have raised their respective flags.

AZ

The AZ (integer zero) flag set by an integer instruction when all bits of the result are zero and

cleared for all other bit patterns. The flag is unaffected by all non-integer instructions.

AN

The AN (integer negative) flag set to on by an integer instruction when the most-significant bit

(MSB) of the result is 1 and cleared when the MSB of the result is 0. The flag is unaffected by all

non-integer instructions.

AC

44 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The AC (integer carry) flag is the carry out of an ADD or SUB instruction, is cleared by all other

integer instructions, and is unaffected by all non-integer instructions.

AV

The AV (integer overflow) flag set by the ADD instruction when the input signs are the same and

the output sign is different from the input sign or by the SUB instruction when the second

operand sign is different from the first operand and the resulting sign is different from the first

operand. The flag is cleared by all other integer instructions and is unaffected by all non-integer

instructions.

BZ

The BZ (floating-point zero) flag is set by a floating-point instruction when the result is zero.

The flag unaffected by all non-floating-point instructions.

BN

The BN (floating-point negative) flag is set by a floating-point instruction when the sign bit

(MSB) of the result is set to 1. The flag unaffected by all non-floating-point instructions.

BV

The BV (floating-point overflow) flag is set by a floating-point instruction when the post

rounded result overflows(unbiased exponent>127), otherwise the BV flag is cleared. The flag

unaffected by all non-floating-point instructions.

AVS

Sticky integer overflow flag set when the AV flag goes high, otherwise not cleared. The flag is

only affected by the ADD and SUB instructions.

BVS

Sticky floating-point overflow flag set when the BV flag goes high, otherwise not cleared. The

flag is unaffected by all non-floating-point instructions.

BIS

Sticky floating-point invalid flag set by a floating-point instruction if the either of the input

operand is NAN, otherwise not cleared. The flag is unaffected by all non-floating-point

instructions.

45 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

BUS

Sticky floating-point underflow flag set by a floating-point instruction if the result is denormal or

one of the inputs to the operation is denormal, otherwise not cleared. The flag is unaffected by all

non-floating-point instructions.

EXCAUSE

A three bit field indicating the cause of a software exception. A software exception edge interrupt

is generated whenever this field is non-zero. The software exception cause values differ for

Epiphany-III and IV and can be found in Appendix-C.

46 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.6 The Epiphany Instruction Set

The Epiphany instruction-set architecture (ISA) is optimized for real-time signal processing

application, but it has all the features needed to also perform well in standard control code.

Instruction-set highlights include:

 Orthogonal instruction set, with no restrictions on register usage.

 Instruction set optimized for floating point computation and efficient data movement.

 Post-modify load/store instructions for efficient handling of large array structures.

 Rich set of branch conditions, with 3-cycle branch penalty on all taken branches and zero

penalty on untaken branches.

 Conditional move instructions to reduce branch penalty for simple control-code structures.

 Instructions with immediate modifies for high code density and low power consumption.

 Compact and efficient floating-point instruction set.

The ISA uses a split-width instruction encoding method, which improves code density compared

with standard 32-bit width encoding. All instructions are available as both 16- and 32-bit

instructions, with the instruction width depending on the registers used in the operation. Any

command that uses registers 0 through 7 only and does not have a large immediate constant is

encoded as a 16-bit instruction. Commands that use higher-numbered registers are encoded as

32-bit instructions. This encoding is transparent to the user, but is carefully integrated with the

compiler to minimize C-based code size and power consumption.

The following section summarizes the instructions available in the Epiphany ISA. A complete

alphabetical listing of the ISA can be found in Appendix A.

Branch Instructions

Unrestricted branching is supported throughout the 32-bit memory map using branch instructions

and register jump instructions. Branching can occur conditionally, based on the arithmetic flags

set by the integer or floating-point execution unit. The following table illustrates the condition

codes supported by the ISA. The architecture supports two sets of flags to allow independent

conditional execution and branching of instructions based on results from two separate arithmetic

units. The full set of branching conditions allows the synthesis of any high-level control

comparison, including: <, <=, =, ==, !=, >=, and >. Both signed and unsigned arithmetic is

supported.

47 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 8: Condition Codes

Code Function Mnemonic Comment

0000 Equal BEQ AZ

0001 Not Equal BNE ~AZ

0010 Greater Than (Unsigned) BGTU ~AZ & AC

0011 Greater Than or Equal

(Unsigned)

BGTEU AC

0100 Less Than or Equal

(Unsigned)

BLTEU AZ | ~AC

0101 Less Than (Unsigned) BLTU ~AC

0110 Greater Than (Signed) BGT ~AZ & (AV ==AN)

0111 Greater Than or Equal

(Signed)

BGTE AV == AN

1000 Less Than (Signed) BLT AV !=AN

1001 Less Than or Equal

(Signed)

BLTE AZ | (AV != AN)

1010 Equal (Float) BBEQ BZ

1011 Not Equal (Float) BBNE ~BZ

1100 Less Than (Float) BBLT BN & ~BZ

1101 Less Than or Equal (Float) BBLTE BN | BZ

1110 Unconditional Branch B -

1111 Branch and Link BL -

48 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Load/Store Instructions

Load and store instructions move data between the general-purpose register file and any legal

memory location within the architecture, including external memory and any other eCore CPU in

the system. All other instructions, such as floating-point and integer arithmetic instructions, are

restricted to using registers as source and destination operands.

The ISA supports the following addressing modes:

 Displacement Addressing: The memory address is calculated by adding an immediate offset

to a base register value. The immediate offset is limited to 3 bits for 16-bit load/store

instructions or 11 bits for 32-bit load/store instructions. The base register value is not

modified by the load/store operation. This mode is useful for accessing local variables.

 Indexed Addressing: The memory address is calculated by adding a register value offset to a

base register value. The base register value is not modified by the load/store operation. This

mode is useful in array addressing.

 Post-Modify Auto-increment Addressing: The memory address is taken directly from the

base register value. After the memory operation has completed, a register offset is added to

the base register value and written back to the base register. This mode is useful for

processing large data arrays and for implementing an efficient stack-pop operation.

Byte, short, word, and double data types are supported by all load/store instruction formats. All

loads and stores must be aligned with respect to the data size being used. Short (16-bit) data

types must be aligned on 16-bit boundaries in memory, word (32-bit) data types must be aligned

on 32-bit boundaries, and double (64-bit) data types must be aligned on 64-bit boundaries.

Unaligned memory accesses returns unexpected data and generates a software exception. Double

data-type load/store instructions must specify an even register in the general-purpose register

file. The corresponding odd register is written implicitly. Attempts to use odd registers with

double data format is flagged as an error by the assembler.

Integer Instructions

General-purpose integer instructions, such as ADD, SUB, ORR, AND, are useful for control

code and integer math. These instructions work with immediate as well as register-based

operands. The instructions update the integer status bits of the STATUS register.

49 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Floating-Point Instructions

An orthogonal set of IEEE754-compliant floating-point instructions for signal processing

applications. These instructions update the floating-point status bits of the STATUS register.

Secondary Signed Integer Instructions

The basic floating point instruction set can be substituted with a set of signed integer instructions

by setting the appropriate mode bits in the CONFIG register [19:16]. These instructions use the

same opcodes as the floating-point instructions and include: IADD, ISUB, IMUL, IMADD,

IMSUB.

Register Move Instructions

All register moves are done as complete word (32-bit) entities. Conditional move instructions

support the same set of condition codes as the branch instructions specified in Table 12.

Program Flow Instructions

A number of special instructions used by the run time environment to enable efficient interrupt

handling, multicore programming, and program debug.

50 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The following set of tables summarizes the instructions available in the ISA.

Table 9: Instruction Set Syntax

Field Meaning

<COND> One of 16 condition codes.

RD Destination Register. Can be any one of the general-purpose registers.

RN Primary Source Register. Can be any one of the general-purpose registers.

RM Secondary Source Register. Can be any one of the general-purpose registers.

<OP2> Secondary operand. An immediate value or secondary sources register. Register can

be any one of the general-purpose registers. Legal immediate value is <simm3> for

16-bit instructions and <simm11> for 32-bit instructions.

<size> Data size selector. Options are B,H,L,D meaning Byte, Half, Long, Double. For

single word transactions the field can be left blank.

<offset> Load-store address offset. Valid offset values are <imm3> for 16-bit instructions

and <imm11> for 32-bit instructions. Offsets are scaled based on the <size> field in

the load/store instruction.

<imm3> Unsigned Immediate value with range of 0 to 7.

<imm8> Unsigned Immediate value with range of 0 to 255.

<imm11> Unsigned Immediate value with range of 0 to 2047.

<imm16> Unsigned Immediate value with range of 0 to 65,535.

<simm3> Signed immediate value with range of -4 to +3.

<simm8> Signed immediate value with range of -128 to +127.

<simm11> Signed immediate value with range of -1024 to +1023.

<simm24> Signed immediate value with range of to -8,388,608 to +8,388,607.

<label> Jump/Branch label resolved by assembler.

<instr>.l The “.l” suffix is used to indicate a 32 bit instruction in case where both a 16 bit and

32 bit version of the same basic instruction exists.

51 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 10: Branching Instructions

Instruction Assembler Flags Function

Conditional

Branch

B<COND> <label> None If <COND>, PC=<label>,

else PC= next instr

Jump B <label> None PC=<label>

Jump and

Link

BL <label> None PC=<label>, LR=next instr.

Register

Jump

JR RN None PC=RN

Register

Jump and

Link

JALR RN None PC=RN, LR= next instruction

52 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 11: Load/Store Instructions

Instruction Assembler Flags Function

Immediate

Offset

{LDR|STR}{size} RD, [RN,#+/-<offset>] None (RD=[RN+/-offset, size] |

[RN+/-offset, size]=RD)

Postmodify-

Immediate

{LDR|STR}{size} RD, [RN], #+/-<offset> None (RD=[RN, size] |

 [RN, size]=RD) ,

RN=RN+/-offset

Register

Offset

{LDR|STR}{size} RD, [RN, +/-RM] None (RD=[RN+/-RM, size] |

[RN+/-RM, size]=RD)

Postmodify-

Register

{LDR|STR}{size} RD, [RN], +/-RM None (RD=[RN, size] |

[RN, size]=RD) ,

RN=RN+/-RM

Test & Set TESTSET RD, [RN,RM]

None if ([RN+RM]) {

RD= ([RN+RM])}

else{([RN+RM])=RD,RD

=0}

53 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 12: Integer Instructions

Instruction Assembler Flags Function

Addition ADD RD,RN,<Op2> AN,AZ,AV,

AC,AVS

RD=RN + OP2

Subtraction SUB RD,RN, <Op2> AN,AZ,AV,

AC,AVS

RD=RN - OP2

Arithmetic Shift

Right

ASR RD,RN, <Op2> AN,AZ,AV,

AC,AVS

RD=RN >>> OP2

Logical Shift

Right

LSR RD, RN, <Op2> AN,AZ,AV,

AC,AVS

RD=RN >> OP2

Logical Shift

Left

LSL RD, RN, <Op2> AN,AZ,AV,

AC,AVS

RD=RN << OP2

Logical Or ORR RD, RN, RM AN,AZ,AV,

AC,AVS

RD= RN | RM

Logical And AND RD, RN, RM AN,AZ,AV,

AC,AVS

RD= RN & RM

Logical Xor EOR RD, RN, RM AN,AZ,AV,

AC,AVS

RD= RN ^ RM

Bit Reverse BITR RD, RN AN,AZ,AV,

AC,AVS

RD= bit-reverse (RN)

54 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 13: Floating-Point Instructions

Instruction Assembler Flags Function

Floating-Point Addition FADD RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD = RN + RM

Floating-Point Subtraction FSUB RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD = RN - RN

Floating-Point Multiply FMUL RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD = RN * RM

Floating-Point Multiply-Add FMADD RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD+=RN * RM

Floating-Point Multiply-Subtract FMSUB RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD-= RN * RM

Floating-Point Absolute FABS RD,RN BN,BZ,BV,

BIS,BVS,BUS

RD = abs(RN)

Float To Fixed Point Conversion FIX RD,RN BN,BZ,BV,

BIS,BVS,BUS

RD = fix(RN)

Fixed To Float Conversion FLOAT RD,RN BN,BZ,BV,

BIS,BVS,BUS

RD = float(RN)

55 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 14: Secondary Integer Instructions

Instruction Assembler Flags Function

Signed Integer Addition IADD RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD = RN+RM

Signed Integer Subtraction ISUB RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD = RN-RM

Signer Integer Multiply IMUL RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD = RN*RM

Signed Integer Multiply-Add IMADD RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD += RN*RM

Signed Integer Multiply-Subtract IMSUB RD,RN,RM BN,BZ,BV,

BIS,BVS,BUS

RD -= RN*RM

Table 15: Register Move Instructions

Instruction Assembler Flags Function

Move Immediate MOV RD,<imm8 | imm16> None RD=<imm8 | imm16>

Move Immediate

(high)

MOVT RD, <imm16> None RD= RD | (<imm16> << 16)

Move Register MOV<COND> RD, RN None If <cond>, RD=RN

Move to Special

Register

MOVTS RD, RN None RD = RN

Move from

Special Register

MOVFS RD, RN None RD = RN

56 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 16: Program Flow Instructions

Instruction Assembler Flags Set Function

Do nothing NOP None Nothing

Idle IDLE None Wait for interrupt

Return from

subroutine

RTS None PC=LR

Return from

interrupts

RTI None PC=IRET

Interrupt Disable GID None All interrupts disabled

Interrupt Enable GIE None All interrupts enabled

Breakpoint BKPT None Breakpoint

Multi-breakpoint MBKPT None Multicore breakpoint

Trap TRAP None Halts program

Sync SYNC None Forces an ILAT[0] on all

cores in group

Wand WAND Status[3] Multicore barrier

57 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.7 Pipeline Description

The Epiphany CPU has a variable-length instruction pipeline that depends on the type of

instruction being executed. All instructions share the same instruction pipeline until the E1

pipeline stage, and instructions are guaranteed to complete once they reach that stage. Load

instructions complete at stage E2, and floating-point instructions complete at stage E4. All other

instructions complete at E1.

Instructions are dispatched in-order but can finish out-of-order. The pipeline controller makes

sure that the integrity of the program is maintained by stalling the pipeline appropriately if there

is a read-after-write (RAW) or write-after-write (WAW) pipeline hazard.

Table 17: Pipeline Stage Description

Stage Name Mnemonic Action

1 Fetch Address FE Fetch address sent to instruction memory

2 Instruction

Memory Access

IM Instruction returns from core memory

3 Decode DE Instructions are decoded

4 Register Access RA Operands are read from register file for all instructions

5 Execution E1 Load/store address calculation

Register read from register file for memory store

operation

Most instructions completed

Integer status flags written

Branching and jumps change program flow

6 Execution E2 Data from load instruction written to register file

7 Execution E3 Floating-point result written to register file in case of

truncation rounding mode

8 Execution E4 Floating-point result written to register file in case of

round-to-nearest-even rounding mode.

58 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Figure 14: Pipeline Graphical View

In the execution of instructions, the CPU implements an interlocked pipeline. When an

instruction executes, the target register of the read operation is marked as busy until the write has

been completed. If a subsequent instruction tries to access this register before the new value is

present, the pipeline will stall until the previous instruction completes. This stall guarantees that

instructions that require the use of data resulting from a previous instruction do not use the

previous or invalid data in the register.

Dual-Issue Scheduling Rules

The CPU has a static dual-issue architecture that allows two instructions to be executed in

parallel on every clock cycle, if certain parallel-issue rules are followed. The basic requirement

for dual issue is that the instruction dispatch is done in-order. This means that for two

instructions to be issued in parallel (on the same clock cycle), there can be no read-after-write

(RAW) or write-after-write (WAW) register dependencies between the two instructions.

For the purpose of the following data-dependency tables, the instruction set can be divided into

the following instruction groups.

 IALU: ADD, SUB, ASR, LSR, LSL, EOR, AND, ORR, BITR, MOVT, MOV

 IALU2: IADD, ISUB, IMUL, IMADD, IMSUB

 FPU: FADD, FSUB, FMUL, FMADD, FMSUB, FIX, FLOAT, FABS

 LOAD/STORE: LDR, STR

 CONTROL: JR, JALR, B<COND>, BL, MOVTS, MOVFS, NOP

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4FE IM DE RA E1 E2 E3 E4

FE IM DE RA E1 E2 E3 E4IM DE RA E1 E2 E3 E4

instr

time

59 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The following table shows the combinations of instructions that can be executed in parallel as

long as there are no read or write register conflicts.

Table 18: Parallel scheduling rules

Instruction Type IALU FPU/IALU2 LOAD/STORE CONTROL

IALU YES NO NO

FPU/IALU2 YES YES NO

LOAD/STORE NO YES NO

CONTROL NO NO NO

The CPU is pipelined to maximize the operating frequency, and energy efficiency and cost, of

the total system. As a result of the processor pipeline, there are data-dependencies that need to be

resolved by software to avoid clock cycle penalties due to processor stalls. The CPU has a fully

interlocked pipeline, meaning that it automatically stalls the CPU to guarantee correct operation

of sequential programs with data dependencies. The C compiler has accurate information about

the CPU pipeline and is able to avoid most data dependencies in a program. However, for

routines optimized in assembly, it is your responsibility to avoid data dependencies if you wish to

optimize performance.

The following tables show the number of clock cycles needed to separate an instruction that is

reserving a certain register and a second instruction that depends on that register. The third

column in the tables gives the number of clock cycles of separation needed between the first

instruction and the second instruction to avoid the stalling. It is the job of the C compiler or

assembly programmer to ensure that these clock cycles can be filled with useful work. An Rz

field in the table indicates that the register that does not affect any pipeline dependency table, and

any register number can be used. Instruction combinations that don’t have any register

dependency stalls such as IALU after IALU instructions are not included in the table.

The last dependency table shows instructions that have dependencies that are fixed and are

independent of instruction-to-instruction register dependencies.

60 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 19: IALU Instruction Sequences

First Instruction Second Instruction Cycle Separation

IALU Instruction

mov rx, rz, rz

FPU Instruction

fadd rx, rx, rx

1

Table 20: FPU Instruction Sequences

First Instruction Second Instruction Cycle Separation

FPU Instruction

fadd rx, rz, rz

FPU Instruction

fadd rx, rx, rx

4

FPU Instruction

fadd rx, rz, rz

Store Instruction (data)

str<size> rx, [rz, rz]

3

FPU Instruction

fadd rx, rz, rz

IALU Instruction

add rx, rx, rx

4

FPU Instruction

fadd rz, rz, rz

Branch on FPU condition

bbne _foobar;

4

FPU Instruction

fadd rz, rz, rz

Conditional Move

Movbne rz,rz

4

FPU Instruction

fadd rx, rz, rz

Special move instruction

movts CTIMER0, rx

4

61 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 21: Load Instruction Sequences

First Instruction Second Instruction Cycle Separation

Load Instruction

ldr<size> rx,[rz,rz]

IALU Instruction

add rx,rx,rx

1

Load Instruction

ldr<size> rx,[rz,rz]

FPU Instruction

fadd rx,rx,rx

2

Load Instruction

ldr<size> rx,[rz,rz]

Store Instruction

str<size> rx, [rx, rx]

1

Load Instruction

ldr<size> rx,[rz,rz]

Load Instruction

ldr<size> rz,[rx, rx]

1

Table 22: Stalls independent of Instruction Sequence

Instruction Stall Cycles

External Data Load

ldr<size> rx,[rz,rz]

10+

Byte | Half-word Internal Data Load

ldr<size> rx,[rz,rz]

2

External Instruction Fetch 10+

62 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Branch Penalties

The branch prediction mechanism used by the CPU assumes that the branch was not taken. There

is no penalty for branches not taken. For branches that are taken, there is a three-cycle constant

penalty. The table below summarizes the different branches and the penalties.

Table 23: Branch Penalties

Branch Instruction Penalty

Branch Not Taken B<COND> 0

Branch Taken B<COND> 3

Jump B 3

Jump and Link BL 3

Register Jump JR 3

Register Jump and Link JALR 3

In a special case, a 1-cycle penalty occurs for jumps to 32-bit instructions that straddle two lines

in the local 64-bit-wide memory. Branches with dependency on floating-point status flags also

incur stall cycles if there is insufficient cycle separation between the floating-point instruction

and the branching instruction.

63 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.8 Interrupt Controller

7.8.1 Overview

The eCore interrupt controller provides full support for prioritized nested interrupt service

routines. Figure 14 shows the behavior of the hardware mechanisms within the interrupt

controller and how the user can control the behavior of the system through code.

Figure 15: Interrupt Service Routine Operation

ILAT[N]
SET

NO

~HALT &
~GID &

~IMASK[N] &
~|IPEND[N:0]

NO

Fetch IVT Addr &
IRET=PC

If nesting,
Save Context &
Execute “GIE”

Execute ISR

Execute “GID” &
Restore Context &

Execute “RTI”

IPEND[N] cleared &
PC=IRET

USER

HARDWARE

64 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The following table summarizes the different interrupts and exceptions specified in the interrupt

vector table (IVT). All interrupts are edge-based.

Table 24: Interrupt Support Summary

Interrupt/Exception
IRQ

Priority

IVT

Address
Event

Sync 0 (highest) 0x0 Sync hardware signal asserted

Software Exception 1 0x4 Floating-point exception, invalid instruction,

alignment error

Memory Fault 2 0x8 Memory protection fault

Timer0 Interrupt 3 0xC Timer0 has expired

Timer1 Interrupt 4 0x10 Timer1 has expired

Message 5 0x14 Message interrupt

DMA0 Interrupt 6 0x18 Local DMA channel-0 finished data transfer

DMA1 Interrupt 7 0x1C Local DMA channel-1 finished data transfer

WAND Interrupt 8 0x20 Wired-AND signal interrupt

User Interrupt 9 (lowest) 0x24 Software generated user interrupt

The IVT entries should be populated with 32-bit relative branch instructions that point to the

appropriate interrupt handlers. The Interrupt Controller uses the following registers to manage

interrupts and exceptions, providing full support for nested interrupts. The priority level of the

interrupt matches the actual bit position within these registers. For example, the sync interrupt

with priority is mapped to bit 0 and the DMA0 interrupt is mapped to bit 6 in the ILAT register.

The IRET register is a 32 bit register while the ILAT, IMASK, and IPEND are 10 bit registers.

65 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.8.2 Global Interrupt Disable Flag (GID)

Bit [1] of the STATUS Register is used to globally enable or disable all interrupts from affecting

the core program flow. Interrupts are disabled when an interrupt starts and when the program

executes a GID instruction. Interrupts are enabled again by executing an RTI or GIE instruction.

The global interrupt enable bit ensures that save-and-restore functionality and context switches

can be done safely, regardless of higher priority interrupts interfering with operation. All

interrupts can be enabled and disabled from software using the GIE and GID instructions. The

GID instruction sets the global interrupt disable bit in the STATUS register, and GIE clears the

same bit. Alternatively, individual interrupts can be disabled by writing to the IMASK register.

7.8.3 User Interrupts

Individual interrupts within the ILAT register can be set and cleared from software by writing to

the ILATST and ILATCL registers using the MOVTS instruction. Software interrupts can be

used to degrade the interrupt priority, thereby allowing lower-priority interrupts to get handled

more quickly. For example, an interrupt handler for the core timer could write to the ILATST

register to force a soft interrupt with the lowest priority level, thus allowing interrupts such as the

DMA interrupt, to be serviced. If the interrupt handler would stay within the timer priority

handler throughout the processing, then the DMA interrupt would not get serviced until the timer

interrupt had finished all the processing.

The recommended method of handling interrupt events in software is to use the interrupt

registration process provided through the Epiphany run-time library. In this way, all interrupt

handling can be done using standard C programming. For more details, please refer to the

Epiphany SDK reference manual.

66 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.8.4 Interrupt Latency

To minimize interrupt latency, two requirements should be met:

 The stack should be placed in local memory. The stack is used to save and restore variables.

If the stack is placed in external memory, loading of these variables could take hundreds of

clock cycles.

 Loads from other cores or external memory should be minimized. Interrupts are disabled

during such loads. Figure 15 illustrates the effect of external reads on interrupt service

latency.

Figure 16: Interrupt Latency Dependency On External Read

67 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.9 Hardware Loops (LABS)

The Epiphany core supports zero overhead loops with the LC (loop counter), LS (loop start

address), and LE (loop end address) registers. The three hardware loop registers must be

correctly programmed before executing the critical code section. When the program counter

(PC) matches the value in LE and the LC is greater than zero, the PC gets set to the address in

LS. The LC register decrements automatically every time the program scheduler completes one

iteration of the code loop defined by LS and LE.

The Epiphany hardware loop does place certain restrictions on the program:

 All interrupts must be disabled while inside a hardware loop.

 The start of the loop must be aligned on a double word boundary.

 The next-to-last instruction must be aligned on a double word boundary.

 All instructions in the loop set as 32 bit instructions using “.l” assembly suffix

 The minimum loop length is 8 instructions.

Example:

 mov r1, %low(loop_start);

 movt r1, %high(loop_start);

 movts ls, r1; //setting loop start address

 mov r1, %low(loop_end);

 movt r1, %high(loop_end);

 movts le, r1; //setting loop end address

 mov r1, #0x10;

 movts lc, r1; //setting loop count

 gid; //disabling interrupts

.balignw 8,0x01a2; //align to 8-byte boundary

loop_start:

 add.l r1, r1, r0; //first instruction in loop

 add.l r2, r2, r0; //”.l” forces 32 bit instruction

 add.l r3, r3, r0;

 add.l r4, r4, r0;

 add.l r5, r5, r0;

 add.l r6, r6, r0;

.balignw 8,0x01a2; //align to 8-byte boundary

 add.l r7, r7, r0;

loop_end:

 add.l r8, r8, r0; //last instruction

 gie; //enabling interrupts

68 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

7.10 Debug Unit

The debug unit in the Epiphany core supports the following debugging features:

 Halting and resuming operations by writing to the DEBUGCMD register from the host

processor or from another Epiphany core.

 Monitoring the status of the by reading from the DEBUGSTATUS register.

 Halting the locally running program by including a BKPT instruction in the code being

executed.

 Halting the locally running program and all other cores in the workgroup by including a

MBKPT instruction in the code being executed.

 Single stepping code through a software implementation (see Epiphany GDB

implementation)

69 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

8 Direct Memory Access (DMA)

8.1 Overview

Each Epiphany processor node contains a DMA engine to facilitate data movement across the

eMesh network. The DMA engine works at the same clock frequency as the CPU and can

transfer one 64-bit double word per clock cycle, enabling a sustained data transfer rate of

8GB/sec. The DMA engine has two general-purpose channels, with separate configuration for

source and destination.

The main features of the DMA engine are:

 Two independent DMA channels per processor node.

 Separate specification of source/destination address configuration per descriptor and channel.

 2D DMA operation.

 Flexible stride sizes

 DMA descriptor chaining.

 Hardware interrupts flagging to local CPU subsystem.

The following table shows the kind of transfers supported by the processor node’s DMA engine.

Table 25: DMA Transfer Types

Source Destination Function

Local

Memory

External

Memory

Data read from one of the four local memory banks, and send data to

the eMesh network as a write through the network interface.

External

Memory

Local

Memory

Read request sent to the eMesh network. You can decide if you want

an interrupt indication when the last data read transaction returns

(blocking DMA) or if the DMA should complete as soon as the last

read request goes out on the eMesh network (non-blocking DMA).

Autodma

Register

Local

Memory

Write from external master. This is used when the DMA is configured

in slave mode.

External

Memory

External

Memory

Read transaction sent to the eMesh network, destination could be

anything because read transactions are split transactions. For read

destinations residing outside of the Epiphany chip, care must be taken

to make sure that the memory supports the split transaction routing

mode needed to route the data read to the final write destination.

70 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

The DMA engine has two complete data transfer channels and supports data movement as a

master as well as a slave device. In a slave configuration, the pace of the data transfers is

controlled by an external master. In a master configuration, the DMA pushes a transaction every

clock cycle if the necessary memory and interface resources are available.

 In the MASTER mode, the DMA generates a complete transfer transaction with a source and

a destination address.

 In the SLAVE mode, the source address of a DMA configuration is ignored. The data is

always taken from the DMAxAUTO register and transferred to the destination address. The

pace of the transaction is driven by another master in the system, which could be an I/O

device, a programmable core, or another DMA channel.

71 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

8.2 DMA Descriptors

The format of DMA descriptors is given in the table below. All descriptors should be placed in

local memory and must be double-word aligned. A descriptor is brought into the DMA channel

configuration register set when the startup bit is set to one or when a DMA transfer is configured

in chaining mode and a new configuration should automatically be brought in at the end of a

transfer.

Table 26: DMA Descriptors

Addr0+7, Addr0+6 Addr0+5, Addr0+4 Addr0+3, Addr0+2 Addr0+1, Addr0

STRIDE-INNER-DST STRIDE-INNER-SRC NXT_PTR DMACONFIG

STRIDE-OUTER-DST STRIDE-OUTER-SRC CNT-OUTER CNT-INNER

DST ADDRESS (HI) DST ADDRESS (LO) SRC ADDRESS (HI) SRC ADDRESS (LO)

8.3 DMA Channel Arbitration

The two DMA channels have a fixed priority, with channel0 having a higher priority over

channel1.

8.4 DMA Usage Restrictions

The DMA does not flag errors on incorrect usage such as: misaligned accesses or illegal memory

location access. Such scenarios will cause unexpected behavior in the system and will likely

result in a core or chip needing to be reset.

72 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

8.5 DMA Transfer Examples

The following example shows how to use the DMA to do a single-block transfer. To make

transfers efficient, double-word transfers should be used, but in this case we are using byte

transfers.

MOV R1, 0x8 ; set the startup bit

MOVT R1, _1D_DESCR ; put descriptor pointer in the upper 16 bits

MOVTS DMA0CONFIG, R1 ; start a DMA transfer by writing to the

 ; DMA config register.

_1D_DESCR;

.word 0x00000003; configure in master mode and enable

.word 0x00010001; increment src/dst address by 1 byte each transaction

.word 0x00010008; transfer has 8 transactions in a single inner loop

.word 0x00000000; outer loop stride not used in this example

.word 0x00002000; set source address to 0x2000, a local address

.word 0x92000000; set destination address to an external address

73 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

9 Event Timers

The Epiphany architecture supports a distributed set of event timers that can be used to sample

real-time events within the system. The type of event to monitor is controlled through the

CONFIG register.

 Clk: General-purpose clock-cycle counter. Can be used to measure time, to profile function

execution time, for real-time operating systems, and for many other purposes.

 Idle: Counts the number of clock cycles spent in idle. Can be used to balance the load on

different CPUs.

 IALU valid instructions: Counts the number of IALU instructions issued.

 FPU valid instructions: Counts the number of FPU instructions issued.

 Dual issues instructions: Counts the number of cycles with two instructions issued

simultaneously.

 E1 stalls: Counts the number of pipeline stalls due to load/store register dependencies.

 RA stalls: Counts all register dependency pipeline stalls.

 Fetch contention stalls: Counts the number of stall cycles due to memory-bank contention in

the processor node. Can be used to uncover issues with program code placement.

 Ext fetch stalls: Counts the number of clock-cycle stalls due to the program sequencer

waiting for an instruction to return from external memory. Can be used to uncover areas of

the code that are running from external memory instead of local memory.

 Ext data stalls: Counts the number of clock-cycle stalls due to a load instruction accessing

external memory and stalling the pipeline. Can be used to uncover areas of the code that are

accessing variables from external memory instead of local memory.

 Mesh traffic: Counts wait or access events on the local cMesh network node. Mesh event

monitor event selection is programmed through the MESHCONFIG registers

The CTIMER0 register contains the current value of the event being monitored. The register

counts down from a high value to zero, decrementing every time the chosen event is detected.

When the timer reaches zero, the counter stops counting and an interrupt is issued to the interrupt

controller. The event count mode is set in the CONFIG register.

The CTIMER1 register contains the current value of the event being monitored. The register

counts down from a high value to zero, decrementing every time the chosen event is detected.

When the timer reaches zero, the counter stops counting and an interrupt is issued to the interrupt

controller. The event count mode is set in the CONFIG register.

74 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

10 Memory Protection Unit (LABS)

The Memory Protection Unit allows the user to specify parts or all of the local memory as read

only memory. The 32KB local memory is split into 8 4KB page that can be independently set to

read-only. If a write is attempted to a page that has been set to read only, and the memory fault

exception bit in the ILAT register is set. The MEMPROTECT register can be used to help debug

program faults related to stack overflow and multicore memory clobbering.

75 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Appendix A: Instruction Set Reference

The following section contains an alphabetical listing of the Epiphany Instruction Set.

76 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

ADD

Description: The ADD instruction adds an integer register value (RN) with a second

integer operand (OP2), which can be an immediate value (SIMM3 or

SIMM11) or register value (RM).

Syntax: ADD <RD>, <RN>, <RM>

 ADD <RD>, <RN>, #SIMM3

 ADD <RD>, <RN>, #SIMM11

<RD> Destination register

<RN> First operand register

<RM> Second operand register

<SIMM3 | SIM11> Three or eleven bit signed immediate value.

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: RD = RN + <OP2>

 AN = RD[31]

 AC = CARRY OUT

 if (RD[31:0] == 0) { AZ=1 } else { AZ=0 }

 if ((RD[31] & ~RM[31] & ~RN[31]) | (~RD[31] & RM[31] & RN[31]))

 { OV=1 }

 else { OV=0 }

 AVS = AVS | AV

Example: ADD R2,R1,#2 ;

 ADD R2,R1,#-100 ;

 ADD R1,R1,R3 ;

77 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

AND

Description: The AND instruction logically “AND”s the operand in register RN with

the operand in register RM and places the result in register RD.

Syntax: AND <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: RD = RN & RM

 AN = RD[31]

 AV = 0

 AC = 0

 If (RD[31:0] == 0) { AZ=1 } else { AZ=0 }

Example: AND R2,R1,R0 ;

78 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

ASR

Description: The ASR instruction performers an arithmetic shift right of the RN

operand based on the shift value (OP2). OP2 is a 5 bit unsigned immediate

value or an unsigned shift value contained within the first 5 bits of

operand register RM. The result is sign extended using bit RN[31]. The

result is placed in register RD.

Syntax: ASR <RD>, <RN>, <RM>

 ASR <RD>, <RN>, #IMM5

<RD> Destination register

<RN> First operand register

<RM> Second operand register

<IMM5> Five bit unsigned immediate value

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: RD = RN >>> <OP2>

 AN = RD[31]

 AV = 0

 AC = 0

 if (RD[31:0] == 0) { AZ=1 } else { AZ=0 }

Example: ASR R0,R1,R2;

79 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

B<COND>

Description: The branch instruction causes a branch to a target address based on the

evaluation of one of 16 condition codes. The instruction allows

conditional and unconditional branching forwards and backwards relative

to the current value of the program counter. All branches are relative with

respect to the current program counter.

Syntax: B<COND> <SIMM8>

 B<COND> <SIMM24>

<COND> One of 15 conditions to evaluate before performing the jump(branch).

 The allowed branching opcodes are: BEQ, BNE, BGT, BGTE,

 BLTE, BLT, BLTU, BLTEU,BGTU,BGTEU, BBEQ, BBNE, BBLT,

 BBLTE. For a further description of the condition fields, refer to the

 condition instruction set summary section. An empty field refers to un

 unconditional branch.

<SIMM8> A signed immediate value to be added the current PC to create a new

 instruction fetch address. The value is sign extended to 32-bit and left

 shifted by 1 bit before being added to the PC.

<SIMM24> A signed immediate value to be added the current PC to create a

 new instruction fetch address. The value is sign extended to 32-bit and

 left shifted by 1 bit before being added to the PC.

Flags Updated: None

Operation: IF (Passed)<COND>)) then

PC = PC +(SignExtend(SIMM) <<1)

Example: _inf: MOV R0,#10 ; loop 10 times

80 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

 _loopA: ADD R1,R1#1 ; some operation

 SUB R0,R0,#1 ; decrement loop counter

 BEQ _loopA ; branch while true

 B _inf ; keep executing forever

BL

Description: The branch instruction causes the upcoming PC to be saved in the LR

register followed by a branch to a target. The branch is relative with

respect to the current program counter.

Syntax: BL <SIMM8>

 BL <SIMM24>

<SIMM8> A signed immediate value to be added the current PC to create a new

 instruction fetch address. The value is sign extended to 32-bit and left

 shifted by 1 bit before being added to the PC.

<SIMM24> A signed immediate value to be added the current PC to create a

 new instruction fetch address. The value is sign extended to 32-bit and

 left shifted by 1 bit before being added to the PC.

Flags Updated: None

Operation: LR=next PC;

PC = PC +(SignExtend(SIMM) <<1)

Example: BL _MY_FUNC; save PC to LR and jump to _MY_FUNC

81 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

BITR

Description: The BITR instruction reverses the order of the bits in the operand RN, the

LSB becomes the MSB and the MSB becomes the LSB, etc. and places

the result in register RD.

Syntax: BITR <RD>, <RN>

<RD> Destination register

<RN> First operand register

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: for(i=0;i<32;i=i+1){

 RD[i]=RN[31-i];

 }

 if (RD[31:0]==0) { AZ=1 } else { AZ=0}

 AN = RD[31]

 AV = 0

 AC = 0

Example: MOV R0,%low(x87654321) ;

 MOV R0,%high(x87654321) ;

 BITR R0,R0 ;R0 gets 0x84C2A6B1

82 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

BKPT

Description: The BKPT instruction causes the processor to halt and wait for external

inputs. The instruction is only be used by the debugging tools such as

GDB and should not be user software. The instruction is included here

only for the purpose of reference.

Syntax: BKPT

83 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

EOR

Description: The EOR instruction logically XORs the operand in register RN with the

operand in register RM and places the result in register RD.

Syntax: EOR <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: RD = RN ^ RM

 AN = RD[31]

 AV = 0

 AC = 0

 if (RD[31:0]==0) { AZ=1 } else { AZ=0}

Example: EOR R2,R0,R1 ;

84 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FABS

Description: The FABS instruction calculates the absolute value of a floating-point

value in register value RN and and places the result in register RD. The

operation updates the floating-point arithmetic flags.

Syntax: FABS <RD>, <RN>.

<RD> Destination register.

<RN> First operand register

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD = abs(RN)

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UnbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FABS R2,R1;

85 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FADD

Description: The FADD instruction adds two 32-bit floating-point operands together

and places the result in a third register. The operation updates the floating

point arithmetic flags.

Syntax: FADD <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD=RN + RM

 BN = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) {B OV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FADD R2,R2,R0;

86 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FIX

Description: These FIX instruction converts the floating-point RN operand to a 32-bit

fixed-point signed integer result. The floating-point operand is rounded or

truncated. The result is placed in register RD. A NAN input returns a

floating-point all ones result. All underflow results, or input which are

zero or denormal, return zero. Overflow result always returns a signed

saturated result: 0x7FFFFFFF for positive, and 0x80000000 for negative.

Syntax: FIX <RD>, <RN>

<RD> Result register for converted fixed point result

<RN> Floating-point operand register to convert.

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD = fix(RN)

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FIX R2,R1;

87 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FLOAT

Description: The FLOAT instructions convert the fixed-point operand in Rn to a

floating-point result. The final result is placed in register Rd. Rounding is

to nearest (IEEE) or by truncation, to a 32-bit boundary, as defined by the

rounding mode. Overflow returns ±infinity (round-to-nearest),underflow

returns ±zero.

Syntax: FLOAT <RD>, <RN>

<RD> Result register for converted fixed point result

<RN> Floating-point operand register to convert.

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD = float(RN)

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FLOAT R2,R1;

88 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FMADD

Description: The FMADD instruction multiplies one floating-point register value (RM)

with a second floating-point register value (RN), adds the result to a third

register(RD) and writes and places the result in register RD. The operation

updates the floating-point arithmetic flags.

Syntax: FMADD <RD>, <RN>, <RM>;

<RD> Accumulation register for fused multiply add instruction

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD = RD + RN * RM

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FMADD R2,R1,R0

FMUL

89 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Description: The FMUL instruction multiplies one floating-point register value (RM)

with a second floating-point register value (RN) and places the result in

register RD. The operation updates the floating-point arithmetic flags.

Syntax: FMUL <RD>, <RN>, <RM>;

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD=RN * RM

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FMUL R2,R1,R0;

90 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FMSUB

Description: The FSUB instruction multiplies one floating-point register value (RM)

with a second floating-point register value (RN), subtracts the result from

a third register(RD) and writes and places the result in register RD. The

operation updates the floating-point arithmetic flags.

Syntax: FMSUB <RD>, <RN>, <RM>

<RD> Accumulation register for fused multiply sub instruction

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD = RD - RN * RM

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FMSUB R2,R1,R0;

91 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

FSUB

Description: The FSUB instruction subtracts one floating-point register value(RM)

from another floating point register value(RN) and places the result in a

third destination register(RD). The operation updates the floating-point

arithmetic flags.

Syntax: FSUB <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

 BV Flag

 BIS Flag

 BUS Flag

 BVS Flag

Operation: RD=RN - RM

 BN = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

 if (UnbiasedExponent(RD) > 127) { BV=1 } else { BV=0}

 if (UbiasedExponent(RD) < -126) { BUS=1 } else { BUS=BUS}

 if (RM or RN == NAN) { BIS=1 } else { BIS=BIS}

 BVS = BVS | BV;

Example: FSUB R2,R1,R0;

92 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

GID

Description: Disables all interrupts

Syntax: GID

Flags Updated: None

Operation: STATUS[1]=1

Example: GID ;

93 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

GIE

Description: Enables all interrupts in ILAT register, dependent on the per bit settings in

the IMASK register.

Syntax: GIE

Flags Updated: None

Operation: STATUS[1]=0

Example: GIE ;

94 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

IADD

Description: The IADD instruction adds two 32-bit signed integer operands together

 and places the result in a third register. The operation updates the

 secondary status flags.

Syntax: IADD <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

Operation: RD=RN + RM

 BN = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

Example: IADD R2, R2, R0;

95 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

IMADD

Description: The IMADD instruction multiplies one signed integer register value (RM)

 with a second signerd integer register value (RN), adds the result to a

 third register(RD) and writes and places the result in register RD. The

 operation updates the secondary arithmetic status flags.

Syntax: IMADD <RD>, <RN>, <RM>;

<RD> Accumulation register for fused multiply add instruction

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

Operation: RD = RD + RN * RM

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

Example: IMADD R2, R1, R0

96 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

IMSUB

Description: The IMSUB instruction multiplies one signed integer register value (RM)

 with a second signed integer register value (RN), subtracts the result to a

 third register (RD) and writes and places the result in register RD. The

 operation updates the secondary arithmetic status flags.

Syntax: IMSUB <RD>, <RN>, <RM>

<RD> Accumulation register for fused multiply sub instruction

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

Operation: RD = RD - RN * RM

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

Example: IMSUB R2, R1, R0;

97 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

IMUL

Description: The IMUL instruction multiplies one signed integer register value (RM)

 with a second signed integer register value (RN) and places the result in

 register RD. The operation updates the secondary arithmetic status flags.

Syntax: IMUL <RD>, <RN>, <RM>;

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

Operation: RD=RN * RM

 N = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

Example: IMUL R2, R1, R0;

98 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

ISUB

Description: The ISUB instruction subtracts one signed integer register value (RM)

 from another signed integer register value (RN) and places the result in a

 third destination register (RD). The operation updates the secondary

 arithmetic status flags.

Syntax: ISUB <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: BN Flag

 BZ Flag

Operation: RD=RN - RM

 BN = RD[31]

 if (RD[30:0]==0) { BZ=1 } else { BZ=0}

Example: ISUB R2, R1, R0;

99 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

IDLE

Description: The instruction places the core in an idle state. The PC is halted and no

more instructions are fetched until an interrupt wakes up the core.

Syntax: IDLE

Flags Updated: None

Operation: STATUS[0]=0

 while(!ILAT){

 PC=PC;

 }

Example: IDLE ;

100 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

JALR

Description: The register-and-link jump instruction causes an unconditional jump to

absolute address contained in Rn. Before jumping to the compute address,

the next PC is saved in the link register (LR). The instruction allows for

efficient support for subroutines and allows for jumping to any address

supported by the instruction set architecture.

Syntax: JALR <RN>

<RN> Register with absolute address to jump to. registers

Flags Updated: None

Operation: LR = PC;

PC = RN;

Example: MOV R0,#_labA ;move label into register

 JALR R0 ;save PC in LR and jump to labA

101 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

JR

Description: The register jump instruction causes an unconditional jump to the absolute

address in register RN. This allows for jumping to any address supported

by the instruction set architecture.

Syntax: JR <RN>;

<RN> Any one of the general-purpose registers.

Flags Updated: None

Flags Updated: None

Operation: PC = RN;

Example: MOV R0,#_labA ;move label into register

JR R0; ;jump to _labA

102 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LDR (DISPLACEMENT)

Description: The displacement mode LDR instruction loads a data from memory to a

general-purpose register (RD). The memory address is the sum of the base

register value (RN) and an immediate index offset. The base register is not

modified by the load operation. The instruction supports loading of byte,

short, word, and double data. Data must be aligned in memory according

to the size of the data. For double data loads, only even RD registers can

be used.

Syntax: LDR<size> <RD>, [<RN>, #+<IMM3>]

 LDR<size> <RD>, [<RN>, #+/-<IMM11>]

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Destination register for the data loaded from memory.

<RN> Register containing the base address for the load instruction.

<IMM3 | IMM11> An unsigned 3 or 11 bit value shifted by 0, 1, 2 or 3 bits before being used

 to compute the address of the load store operation. The shifting

 amount depends on the size of the data being moved and allows for

 extending the range of the immediate value.

< - > The “–“ option specified that the immediate value should be subtracted

 from the base address. This option is only available for the 11

 bit immediate values instruction.

Flags Updated: None

Operation: address= RN +/- IMM << (log2(size_in_bits/8)) ;

 RD=memory[address];

Example: LDRB R31,[R2] ;loads byte

 LDR R0,[R2,#1] ;loads word

103 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LDR (INDEX)

Description: The index mode LDR loads data from memory to a general-purpose

register (RD). The memory address is the sum of the base register (RN)

and an index register (RM). The base register is not modified by the load

operation. The instruction supports loading of byte, short, word, and

double data. Data must be aligned in memory according to the size of the

data. For double data loads, only even RD registers can be used.

Syntax: LDR<size> <RD>, [<RN>, +/-<RM>]

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Destination register for the word loaded from memory

<RN> Register containing the base address for the load instruction

<RM> Register containing the index address to add to the base address.

< - > The “–“ option specified that the index register should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN +/- RM;

 RD=memory[address];

Example: LDRB R31,[R2,R1] ;loads byte

 LDR R0,[R2,R1] ;loads word

104 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LDR (POSTMODIFY)

Description: The post-modify mode LDR loads data from memory to a general purpose

register (RD). The memory address used is the value of the base register

(RN). After loading the data from memory, the base value register (RN) is

updated with the sum of the initial base value and the index value in (RM).

The instruction supports loading of byte, short, word, and double data.

Data must be aligned in memory according to the size of the data. For

double data loads, only even RD registers can be used.

Syntax: LDR<size> <RD>, [<RN>], +/-<RM>

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Destination register for the word loaded from memory.

<RN> Register containing the base address for the load instruction.

<RM> Register containing the index address for the load instruction.

< - > The “–“ option specified that the index register should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN;

 RD=memory[address];

 RN=RN +/- RM;

Example: LDRS R31,[R2],R1 ;loads short, updates R2

 LDRD R0,[R2],R1 ;loads double, updates R2

105 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LDR (DISPLACEMENT-POSTMODIFY)

Description: The post-modify mode LDR allows a word to be loaded from memory to a

general-purpose register (RD). The memory address used is the value of

the base register (RN). After loading the data from memory, the base value

register (RN) is updated with the sum/subtraction of the initial base value

and the immediate index value (IMM11). The instruction supports loading

of byte, short, word, and double data. Data must be aligned in memory

according to the size of the data. For double data loads, only even RD

registers can be used.

Syntax: LDR<size> <RD>, [<RN>], #+/-<IMM11>

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Destination register for the data loaded from memory

<RN> Register containing the base address for the load instruction

<IMM11> An unsigned 11 bit value shifted by 0, 1, 2 or 3 bits before being used

 to compute the address of the load store operation. The shifting allows

 for extending the range of the immediate value. The value is added to the

 value of <RN> to form the address in memory from which the word is

 loaded.

< - > The “–“ option specified that the index address should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN;

 RD=memory[address];

 RN=RN +/- IMM11 << (log2(size_in_bits/8));

Example: LDRS R31,[R2],#1 ;loads short, updates R2

 LDRD R0,[R2],#4 ;loads double, updates R2

106 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LSL

Description: The LSL instruction performs a logical shift left of the RN operand based

on the shift value (OP2). OP2 is a 5 bit unsigned immediate value or an

unsigned shift value contained within the first 5 bits of operand register

RM. Zeros fill the bit positions vacated by the shifted RN word. The result

is placed in register RD.

Syntax: LSL <RD>, <RN>, <RM>

 LSL <RD>, <RN>, #IMM5

<RD> Destination register

<RN> First operand register

<RM> Second operand register

<IMM5> Five bit unsigned immediate value

Flags Updated: AN

 AZ

 AV

 AC

Operation: RD = RN << <OP2>

 AN = RD[31]

 AV = 0

 AC = 0

 if (RD[31:0]==0) { AZ=1 } else { AZ=0}

Example: LSL R0,R1,R2 ;

 LSL R0,R1,#3 ;

107 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

LSR

Description: The LSR instruction performs a logical shift right of the RN operand

based on the shift value (OP2). OP2 is a 5 bit unsigned immediate value or

a unsigned shift value contained within the first 5 bits of operand register

RM. Zeros fill the bit positions vacated by the shifted RN word. The result

is placed in register RD.

Syntax: LSR <RD>, <RN>, <RM>

 LSR <RD>, <RN>, #IMM5

<RD> Destination register

<RN> First operand register

<RM> Second operand register

<IMM5> Five bit unsigned immediate value

Flags Updated: AN

 AZ

 AV

 AC

Operation: RD = RN >> <OP2>

 AN = RD[31]

 AV = 0

 AC = 0

 if (RD[31:0]==0) { AZ=1 } else { AZ=0}

Example: LSR R0,R1,R2 ;

 LSR R0,R1,#3 ;

108 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MBKPT (LABS)

Description: The MBKPT instruction sends a halt signal to all cores in the system. It

 allows all cores to stop at approximately the same time, simplifying

 multicore code debugging easier. The propagation of the MBKPT signal

 across the chip can be blocked by setting the appropriate edge bits in the

 MESHCONFIG register.

Syntax: MBKPT

Flags Updated: None

Operation: Halts all cores within the group (sets DEBUGSTATUS[0] to “1”)

109 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MOV<COND>

Description The MOV instruction conditionally copies the contents of the source

register (RN) into the destination register (RD). The condition codes are

the same as those of the conditional branch instructions. A MOV without

any condition field moves register RN to register RD regardless of the

state of the flags.

Syntax: MOV<cond> <RD>, <RN>

<cond> One of the 15 condition codes. Legal condition codes include:

 EQ, NE, GT, GTE, LTE, LT, LTU, LTEU,GTU, GTEU, BEQ, BNE,

 BLT, BLTE. If no argument is specified, the copy always happens.

<RD> Destination register

<RN> Source register for move operation.

Flags Updated: None

Operation: IF (Passed) <COND>)) then

 RD = RN

Example: MOVEQ R2,R0 ;copies R0 to R2 if the EQ

 MOV R3,R1 ;copies R1 to R3

110 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MOV (IMMEDIATE)

Description: The MOV immediate instruction copies an unsigned immediate constant

in the destination register (RD).

Syntax: MOV <RD>, #<IMM8>;

 MOV <RD>, #<IMM16>;

<RD> Destination register for move operation.

<IMM8> An 8-Bit unsigned immediate value.

<IMM16> A 16-Bit unsigned immediate value.

Flags Updated: None

Operation: RD=<imm>

Example: MOV R0,#25 ;Sets R0 to 25

111 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MOVT (IMMEDIATE)

Description: The MOVT immediate instruction copies an unsigned immediate constant

in the destination register (RD).

Syntax: MOVT <RD>, #<IMM16>;

<RD> Destination register for move operation.

<IMM16> A 16-Bit unsigned immediate value.

Flags Updated: None

Operation: RD=Rd(low) | (<imm16> << 16)

Example: MOV R0,%low(0x90000000) ;sets all 32 bits

 MOVT R0,%high(0x90000000) ;sets upper 16-bits

112 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MOVFS

Description: The MOVFS instruction copies a value from a special core control register

to a general-purpose register.

Syntax: MOVFS <RD>, <SPECIAL>;

<SPECIAL> Special Register to copy value from

<RD> General-purpose destination register for move operation

Flags Updated: None

Operation: RD = SPECIAL

Example: MOVFS R0,CONFIG ;copies CONFIG value to R0

113 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MOVTS

Description: The MOVTS instruction copies a value from a general purpose register

file to a core control registers.

Syntax: MOVTS <SPECIAL>, <RN>

<SPECIAL> Special Register to copy value into

<RN> General-purpose source register for move operation

Flags Updated: None

Operation: SPECIAL = RN

Example: MOVTS CONFIG,R0 ;copies R0 to CONFIG register

114 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

NOP

Description: The instruction does nothing, but holds an instruction slot.

Syntax: NOP

Flags Updated: None

Operation: None

Example: NOP ;

115 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

ORR

Description: The ORR instruction logically ors the operand in register RN with the

operand in register RM and places the result in register RD.

Syntax: ORR <RD>, <RN>, <RM>

<RD> Destination register

<RN> First operand register

<RM> Second operand register

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: RD = RN | RM

 AN = RD[31]

 AV = 0

 AC = 0

 if (RD[31:0]==0) { AZ=1 } else { AZ=0}

Example: ORR R2,R1,R0 ;

116 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

RTI

Description: The RTI instruction causes the address in the IRET register to be restored

to the PC register, a clearing of the corresponding bit in the IPEND

register. All actions are carried out as a single atomic operation.

Syntax: RTI;

Flags Updated: None

Operation: IPEND[i]=0; where i is the current interrupt level being serviced

 STATUS[1]=0;

 PC=IRET;

 <execute instruction at PC>

Example: RTI ;

117 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

RTS (alias instruction)

Description: This is an alias instruction for JR <LR>. When branching to a subroutine

using the BL or JALR instruction, the next instruction PC is saved in

register R14 (LR). It is used to return from a subroutine/function in the

program.

Syntax: RTS;

Flags Updated: None

Operation: PC=R14

Example: RTS ;

118 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

SUB

Description: The SUB instruction subtracts an integer register value (OP2) from an

integer value in register (RN). The OP2 operand can be an immediate

value (SIMM3 | SIMM11) or register value (RM).

Syntax: SUB <RD>, <RN>, <RM>

 SUB <RD>, <RN>, #SIMM3

 SUB <RD>, <RN>, #SIMM11

<RD> Destination register

<RN> First operand register

<RM> Second operand register

<SIMM3 | SIM11> Three or eleven bit signed immediate value.

Flags Updated: AN Flag

 AZ Flag

 AV Flag

 AC Flag

Operation: RD = RN - <OP2>

 AN = RD[31]

 AC = BORROW

 if (RD[31:0]==0) { AZ=1 } else { AZ=0}

 if ((RD[31] & ~RM[31] & RN[31]) | (RD[31] & ~RM[31] & RN[31]))

 { OV=1 }

 else { OV=0 }

 AVS = AVS | AV

Example: SUB R2,R1,R0 ;

119 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

STR (DISPLACEMENT)

Description: The displacement mode STR stores a word to memory from a general

purpose register (RD). The memory address is the sum of the base register

value (RN) and an immediate index offset. The base register is not

modified by the store operation. The instruction supports storing of byte,

short, word, and double data. Data must be aligned in memory according

to the size of the data. For double data stores, only even RD registers can

be used.

Syntax: STR<size> <RD>, [<RN>, #+<IMM3>]

 STR<size> <RD>, [<RN>, #+/-<IMM11>]

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Source register for the word store to memory.

<RN> Register containing the base address for the store instruction.

<IMM3 | IMM11> An unsigned 3 or 11 bit value shifted by 0, 1, 2 or 3 bits before being used

 to compute the address of the load store operation. The shifting allows

 for extending the range of the immediate value. The value is added to the

 value of <RN> to form the address in memory to which the word is

 stored.

< - > The “–“ option specified that the index register should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN +/- IMM << (log2(size_in_bits/8));

 memory[address]=RD;

Example: STRB R31,[R2,#1] ;stores byte to addr in R2

 STR R0,[R2,#0x4] ;stores word to addr in R2

120 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

STR (INDEX)

Description: The index mode STR stores a word to memory from a general-purpose

register (RD). The memory address is the sum of a base register (RN) and

an index register.(RM) The base register is not modified by the store

operation. The instruction supports loading of byte, short, word, and

double data. Data must be aligned in memory according to the size of the

data. For double data loads, only even RD registers can be used.

Syntax: STR<size> <RD>, [<RN>, +/-<RM>]

<size> Byte(B), Half(H), Word(), or Double(D)\

<RD> Source register for the word stored to memory.

<RN> Register containing the base address for the store instruction.

<RM> Register containing the index address for the store instruction.

< - > The “–“ option specified that the index register should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN +/- RM;

 memory[address]=RD;

Example: STRB R31,[R2,R1] ;stores byte to addr in R2

 STR R0,[R2,R1] ;stores word to addr in R2

121 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

STR (POSTMODIFY)

Description: The postmodify STR instruction stores a word in memory from a general

purpose register (RD). The memory address used is the value of the base

register (RN). After storing the the data in memory, the base value register

(RN) is updated with the sum of the initial base value(RN) and the index

value in (RM). The instruction supports loading of byte, short, word, and

double data. Data must be aligned in memory according to the size of the

data. For double data loads, only even RD registers can be used.

Syntax: STR<size> <RD>, [<RN>], +/-<RM>

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Source register for the word stored to memory.

<RN> Register containing the base address for the store instruction.

<RM> Register containing the index address for the store instruction.

< - > The “–“ option specified that the index register should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN;

 memory[address]=RD;

 RN=RN +/- RM;

Example: STRS R31,[R2], R1 ;stores short to addr in R2

 STRD R0,[R2], R3 ;stores double to addr in R2

122 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

STR (DISPLACEMENT-POSTMODIFY)

Description: The postmodify STR instruction stores a word in memory from a general

purpose register (RD). The memory address used is the value of the base

register (RN). After storing the the data in memory, the base value register

(RN) is updated with the sum of the initial base value(RN) and the index

value in (IMM11). The instruction supports loading of byte, short, word,

and double data. Data must be aligned in memory according to the size of

the data. For double data loads, only even RD registers can be used.

Syntax: STR<size> <RD>, [<RN>], +/-<IMM11>

<size> Byte(B), Half(H), Word(), or Double(D)

<RD> Source register for the word stored to memory.

<RN> Register containing the base address for the store instruction.

<IMM11> An unsigned 11 bit value shifted by 0, 1, 2 or 3 bits before being used

 to compute the address of the load store operation. The shifting allows

 for extending the range of the immediate value. The value is added to the

 value of <RN> to form the address in memory to which the word is stored.

< - > The “–“ option specified that the index register should be

 subtracted from the base address.

Flags Updated: None

Operation: address= RN;

 memory[address]=RD;

 RN=RN +/- IMM11 << (log2(size_in_bits/8));

Example: STRS R31,[R2],#2 ;stores short to addr in R2

 STRD R0,[R2],#1 ;stores double to addr in R2

123 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

SYNC (LABS)

Description: The SYNC instruction sends an interrupt pulse to all cores on the chip. It

 allows for a secondary method of syncing up all cores to start operating at

 approximately the same time. The propagation of the SYNC signal can be

 blocked by setting the appropriate edge bits in the MESHCFG

 register.

Syntax: SYNC

Flags Updated: None

Operation: Sets the ILAT[0] of all cores within a work group to “1”.

124 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

TRAP

Description: The TRAP instruction causes the processor to halt and wait for external

inputs. The immediate field within the instruction opcode is not processed

by the hardware but can be used by software such as a debugger or

operating system to find out the reason for the TRAP instruction.

Syntax: TRAP <IMM5>

<IMM5> An unsigned 5 bit value. The following list indicates the different codes

 that can be used with the TRAP instruction to indicate what action to take

 by the operating system, debugger, or other software infrastructure.

 0-2 = reserved

 3 = program exit indicator

 4 = indicates success, can be used to indicate “test passed”

 5 = indicates assertion, test “failed”

 6 = reserved

 7 = initiates system call

In the case of TRAP 7, a system call is initiated. In this case, a sub argument needs to be passed

in R3 indicating what further action to take, based on the following table. Arguments to the

system calls are passed in Register R0-R2.

Function R0 R1 R2 R3

File Open Path Name Pointer 0 0 2

File Close File Descriptor 0 0 3

Read File Descriptor Buffer Pointer Buffer Length 4

Write File Descriptor Buffer Pointer Buffer Length 5

File Lseek File Descriptor File Offset Whence 6

File Unlink Path Name Pointer 0 0 7

Fstat Path Name Pointer Status Pointer 0 10

Stat File Descriptor Status Pointer 0 15

Flags Updated: None

Operation: Halts processor;

Example: TRAP 0 ;Halt processor to prepare for write

125 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

TESTSET

Description: The TESTSET instruction does an atomic “test-if-not-zero”, then

conditionally writes on any memory location within the Epiphany

architecture. The absolute address used for the test and set instruction must

be located within the on-chip local memory and must be greater than

0x00100000. The instruction tests the value of a specific memory location

and if that value is zero, writes in a new value from the local register file.

If the value at the memory location was already set to a non-zero value,

then the value is returned to the register file, but the memory location is

left unmodified.

Syntax: TESTSET RD, [RN, +/-RM];

Flags Updated: None

Operation: if ([RN+/-RM]) {

 RD= ([RN+/-RM])

 }

 else{

 ([RN+/-RM])=RD

 RD=0;

 }

Flags Updated: None

Example: /*example of trying to lock on value in memory*/

 _loop: MOV R2, R3 ; value to write

 TESTSET R2, [R0, R1]; test-set

 SUB R2, R2, #0 ; check result

 BNE_loop ; keep trying

126 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

WAND (LABS)

Description: The WAND instruction sets flag bit [3] in the STATUS register and moves

 on to the next instruction. When all cores in a group have set their

 respective wand bits, then an interrupt is generated on the WAND-flag

 interrupt line. The instruction can be used to create distributed multicore

 barriers.

Syntax: WAND

Flags Updated: None

Operation: STATUS[3]=1

Example: WAND;

 IDLE; /*wait for every core in the group to execute WAND*/

 …

 /*in ISR, clear STATUS[3] bit*/

127 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Appendix B: Register Set Reference

Register Summary

This appendix contains detailed descriptions for all the registers within the Epiphany core

architecture. Complete 32 bit addresses are constructed by combining the local 20 bit addresses

shown in the tables with the MSB aligned 12 bit core ID.

Table 27: eCore Registers

Local

Address

Register Name Access Comment

0xF0000

0xF00FC

R0-R63 RD/WR General purpose registers

0xF0400 CONFIG RD/WR Core configuration

0xF0404 STATUS RD/WR Core status

0xF0408 PC RD/WR Program counter

0xF040C DEBUGSTATUS RD Debug status

0xF0414 LC RD/WR Hardware loop counter

0xF0418 LS RD/WR Hardware loop start address

0xF041C LE RD/WR Hardware loop end address

0xF0420 IRET RD/WR Interrupt PC return value

0xF0424 IMASK RD/WR Interrupt mask

0xF0428 ILAT RD/WR Interrupt latch

0xF042C ILATST WR Alias for setting interrupts

0xF0430 ILATCL WR Alias for clearing interrupts

0xF0434 IPEND RD/WR Interrupts currently in process

0xF0440 FSTATUS WR Alias for writing to all STATUS bits

128 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

0xF0448 DEBUGCMD WR Debug command register

0xF070C RESETCORE WR Per core software reset

Table 28: Event Timer Registers

Address Register Name Access Comment

0xF0438 CTIMER0 RD/WR Core timer0

0xF043C CTIMER1 RD/WR Core timer1

Table 29: Processor Control Registers

Address Register Name Access Comment

0xF0604 MEMSTATUS RD/WR Memory protection status

0xF0608 MEMPROTECT RD/WR Memory protection configuration

Table 30: DMA Registers

Address Register Name Access Address

0xF0500 DMA0CONFIG RD/WR DMA channel0 configuration

0xF0504 DMA0STRIDE RD/WR DMA channel0 stride

0xF0508 DMA0COUNT RD/WR DMA channel0 count

0xF050C DMA0SRCADDR RD/WR DMA channel0 source address

0xF0510 DMA0DSTADDR RD/WR DMA channel0 destination address

0xF0514 DMA0AUTO0 RD/WR DMA channel0 slave lower data

0xF0518 DMA0AUTO1 RD DMA channel0 slave upper data

129 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

0xF051C DMA0STATUS RD/WR DMA channel0 status

0xF0520 DMA1CONFIG RD/WR DMA channel1 configuration

0xF0524 DMA1STRIDE RD/WR DMA channel1 stride

0xF0528 DMA1COUNT RD/WR DMA channel1 count

0xF052C DMA1SRCADDR RD/WR DMA channel1 source address

0xF0530 DMA1DSTADDR RD/WR DMA channel1 destination address

0xF0534 DMA1AUTO0 RD/WR DMA channel1 slave lower data

0xF0538 DMA1AUTO1 RD/WR DMA channel1 slave upper data

0xF053C DMA1STATUS RD/WR DMA channel1 status

Table 31: Mesh Node Control Registers

Address Register Name Access Comment

0xF0700 MESHCONFIG RD/WR Mesh node configuration

0xF0704 COREID RD Processor node ID

0xF0708 MULTICAST RD/WR Multicast configuration

0xF0710 CMESHROUTE RD/WR cMesh routing configuration

0xF0714 XMESHROUTE RD/WR xMesh routing configuration

0xF0718 RMESHROUTE RD/WR rMesh routing configuration

130 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

CMESHROUTE (G4-LABS)

Table 32: CMESHROUTE Register

CMESHROUTE: 0xF0710

Bit Name Function

[2:0] NORTH_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions east

110: send northbound transactions south

111: send northbound transactions west

[5:3] EAST_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions south

110: send northbound transactions west

111: send northbound transactions north

[8:6] SOUTH_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions west

110: send northbound transactions north

111: send northbound transactions east

[11:9] WEST_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions north

110: send northbound transactions east

111: send northbound transactions south

131 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

COREID

The row-column coordinate of the processor nodes is contained in the read-only COREID

register, which is accessible by software using the “MOVFS RN, COREID” instruction. The

COREID register facilitates writing code that is independent of processor nodes and that can be

easily mapped to any node within the Epiphany architecture.

Table 33: COREID Register

COREID: 0xF0704

Bits Name Function

[5:0] COLUMN_ID Core column ID

[11:6] ROW_ID Core row ID

[31:12] RESERVED N/A

132 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

CONFIG

Table 34: CONFIG Register

CONFIG: 0xF0400

Bit Name Function

[0] RMODE IEEE Floating-Point Truncate Rounding Mode

0 = Round to nearest even rounding

1 = Truncate rounding

[1] IEN Invalid floating-point exception enable

0 = Exception turned off

1 = Exception turned on

[2] OEN Overflow floating-point exception enable

0 = Exception turned off

1 = Exception turned on

[3] UEN Underflow floating-point exception enable

0 = Exception turned off

1 = Exception turned on

[7:4] CTIMER0CFG Controls the events counted by CTIMER0.

0000 = off

0001 = clk

0010 = idle cycles

0011 = reserved

0100 = IALU valid instructions

133 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

0101 = FPU valid instructions

0110 = dual issue clock cycles

0111 = load (E1) stalls

1000 = register dependency (RA) stalls

1001 = reserved

1010 = local memory fetch stalls

1011 = local memory load stalls

1100 = external fetch stalls

1101 = external load stalls

1110 = mesh traffic monitor 0

1111 = mesh traffic monitor 1

[11:8] CTIMER1CFG Timer1 mode, same description as for CTIMER0.

A 0011 configuration selects the carry out from TIMER0,

effectively creating a 64 bit timer (NOTE: not available in

Epiphany-III).

[15:12] CTRLMODE This register controls certain routing modes within the eMesh.

More information can be found in eMesh chapter.

0000:Normal routing mode

0100: DMA channel0 last transaction indicator

1000: DMA channel1 last transaction indicator

1100: Message mode routing (LABS)

0001: Force routing to the NORTH at destination

0101: Force routing to the EAST at destination

1001: Force routing to the SOUTH at destination

1101: Force routing to the WEST at destination

134 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

xx10: Reserved

0011: Multicast routing (LABS)

1011: Reserved

0111: Reserved

1111: Reserved

[16] RESERVED N/A

[19:17] ARITHMODE Selects the operating mode of the data path unit.(“FPU”)

000 = 32bit IEEE float point mode

100 = 32bit signed integer mode

All other modes reserved.

[21:20] RESERVED N/A

[22] LPMODE 0=Only minimal clock gating in idle mode

1=Aggressive power down in idle mode (Recommended).

[25-23] RESERVED N/A

[26] TIMERWRAP 0=Timer stops when it reaches 0x0

1=Timer resets to 0xFFFFFFFF when it reaches 0x0 and

keeps going.

(only available in Epiphany-IV) (LABS)

[31:27] RESERVED

135 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

CTIMER0

Table 35: CTIMER0 Register

CTIMER0: 0xF0438

Bits Name Function

[31:0] CTIMER0 Complete 32-bit timer or lower 32-bits of 64-bit timer

CTIMER1

Table 36: CTIMER1 Register

CTIMER1: 0xF043C

Bits Name Function

[31:0] CTIMER1 Complete 32-bit timer or upper 32-bits of 64-bit timer

DMAxAUTO0 (LABS)

The DMA AUTO registers are used in DMA slave mode. In slave mode, the rate of transactions

is controlled by the rate of writes being to the AUTODMA register rather than by the DMA

transaction master. In the case of double-word data transfers, DMAxAUTO0 receives the lower

32 bits and DMAxAUTO1 receives the upper 32 bits.

Table 37: DMAxAUTO0 Register

DMA0AUTO0: 0xF0514

DMA1AUTO0: 0xF0534

Bits Name Function

[31:0] DMAxAUTO0 Lower 32-bits of the DMA slave mode receiver register pair

136 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

DMAxAUTO1 (LABS)

Table 38: DMAxAUTO0 Register

DMA0AUTO1: 0xF0518

DMA1AUTO1: 0xF0538

Bits Name Function

[31:0] DMAxAUTO0 Lower 32-bits of the DMA slave mode receiver register pair

DMAxCONFIG

The DMA configuration register is used to configure the type of DMA transfer. The following

table shows the configuration options for each channel in the DMA engine.

Table 39: DMACONFIG Register

DMA0CONFIG: 0xF0500

DMA1CONFIG: 0xF0520

Bit Name Function

[0] DMAEN Turns on DMA channel.

1=enabled

0=disabled

[1] MASTER Sets up DMA channel to work in master made

1=master mode

0=slave mode

[2] CHAINMODE Sets up DMA in chaining mode so that a new descriptor is

137 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

automatically fetched from the next descriptor address at the

end of the current configuration.

1=Chain mode

0=One-shot mode

[3] STARTUP Used to kick start the DMA configuration. When this bit is

set to 1, the DMA sequencer looks at bits [31:16] to find the

descriptor address to fetch the complete DMA configuration

from. Once the descriptor has been completely fetched, the

DMA will start data transfers.

1=Fetch descriptor

0=Normal operation

[4] IRQEN Enables interrupt at the end of the complete DMA channel.

In the case of chained interrupts, the interrupt is set before

the next descriptor is fetched.

1=Enable interrupt at end of DMA transfer

0=Disable interrupt at end of DMA transfer.

[6:5] DATASIZE Size of data transfer.

00=byte, 01=half-word, 10=word, 11=double-word

[9:7] RESERVED N/A

[10] MSGMODE Attach a special message to the last data item of a DMA

channel transfer. If the destination address is local memory,

then the transition to DMA_IDLE only occurs after the last

data item has returned. If the destination address is in

another core, then a message interrupt (IRQ5) is sent along

138 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

with the last data item. (LABS)

[11] RESERVED N/A

[12] SHIFT_SRC_IN Left shift inner loop source stride address by 16 bits

(LABS)

[13] SHIFT_DST_IN Left shift inner loop destination stride address by 16 bits

(LABS)

[14] SHIFT_SRC_OUT Left shift outer loop source stride address by 16 bits

(LABS)

[15] SHIFT_DST_OUT Left shift outer loop destination stride address by 16 bits

(LABS)

[31:16] NEXT_PTR Address of next DMA descriptor for normal operation.

Address of immediate descriptor to fetch in case of startup

mode.

DMAxCOUNT

This register is used to set up the number of transactions in the inner and outer loops of the DMA

transaction. The upper 16 bits specify the outer loop of the DMA transfer and the and lower 16

bits of the register specify the number of inner loops. The outer and inner loops must be set to a

value of one or greater. The DMA block transfer is complete when the DMACOUNT register

reaches zero. The inner count value is cleared to the initial count every time the outer loop is

decremented.

Table 40: DMACOUNT Register

DMA0COUNT: 0xF0508

DMA1COUNT: 0xF0528

Bits Name Function

139 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

[15:0] INNER_COUNT Transactions remaining within inner loop.

[31:16] OUTER_COUNT Number of outer loop iterations remaining. (“2D”)

DMAxDSTADDR

This register contains the 32-bit address of the transaction currently being transferred. The

address can be a local address (bits [31:20] all zero) or a global address. The register gets loaded

when the descriptor is fetched from memory and is updated at the completion of every

transaction. The updated address is equal to the old destination address added with the value in

the destination field in the stride register.

Table 41: DMADSTADDR Register

DMA0DSTADDR: 0xF0510

DMA1DSTADDR: 0xF0530

Bits Name Function

[31:0] DSTADDR Current transaction destination address to write to

DMAxSRCADDR

This register contains the 32-bit source address of the transaction currently being transferred. The

address can be a local address (bits [31:20] all zero) or a global address. The register gets loaded

when the descriptor is fetched from memory and is updated at the completion of every

transaction. The updated address is equal to the old source address added with the value in the

destination field in the stride register.

Table 42: DMASRCADDR Register

DMA0SRCADDR: 0xF050C

DMA1SRCADDR: 0xF052C

Bits Name Function

140 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

[31:0] SRC_ADDR Current transaction source address to read from.

DMAxSTATUS

Table 43: DMASTATUS Register

DMA0STATUS: 0xF051C

DMA1STATUS: 0xF053C

Bit Name Function

[3:0] DMASTATE 0x0=DMA idle

0x5=DMA active

0x6=DMA in slave mode waiting for transaction

0xA=Waiting for last data item to return to local memory. Only

relevant for MSGMODE.

0xB=DMA in transfer pause state.

0xD=DMA configuration error. Occurs when the DMA

configuration register is written while the DMA is not in in an

IDLE state.

All other DMA states are temporary in nature and are not

meaningful to the user.

[15:4] RESERVED N/A

[31:16] CURR_PTR The address of DMA descriptor currently being processed.

DMAxSTRIDE

The register contains two signed 16-bit values specifying the stride, in bytes, used to update the

source and destination address register after a completed transaction. The lower 16 bits specify

source address register update stride and the upper 16 bits specify the destination address stride.

At the end of an inner-loop turn, this register is loaded with the outer-loop stride values to make

address adjustments of the source and destination addresses before continuing with the next inner

141 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

loop of data transfer. Before the next inner loop starts, the stride register is reloaded with the

inner-loop stride values. The stride values are specified in bytes and should match the type of

transfers being done. All DMA transactions must be aligned appropriately in memory.

Table 44: DMASTRIDERegister

DMA0STRIDE: 0xF0504

DMA1STRIDE: 0xF0524

Bits Name Function

[15:0] SRC_STRIDE Value to add to the DMAxSRCADDR after each transaction.

[31:16] DST_STRIDE Value to add to the DMAxDSTADDR after each transaction.

DEBUGCMD

A write only alias register used to place control the debug state of the Epiphany core from an

external agent.

Table 45: DEBUGCMD Register

DEBUGCMD: 0xF0448

Bits Name Function

[1:0] COMMAND 00: Force the processor into a “running” state (i.e. resume)

01 : Force the processor into a “halt” state (i.e. halt)

DEBUGSTATUS

Table 46: DEBUGSTATUS Register

DEBUGSTATUS: 0xF040C

Bits Name Function

[0] HALT 0: Processor operating normally

1: Processor in “halt” state

142 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

[1] EXT_PEND 0: No external load or fetch pending

1: External load or fetch pending

[2] MBKPT_FLAG 0: No multicore breakpoint active

1: Multicore breakpoint active (LABS)

[31:3] RESERVED N/A

FSTATUS (LABS)

Table 47: FSTATUS Status Register

FSTATUS: 0xF0440

Bits Name Function

[31:0] STATUS Write to all bits in STATUS register. Normally in writing to the

STATUS register, bits [2:0] are not writable.

ILAT

The ILAT register records all interrupt events. All events are positive edge-triggered, meaning

that there is no need to hold the interrupt bit high until the event has been completed. Each bit in

the ILAT register (except for the user interrupt at bit 9) is tied to a specific hardware event. The

ILAT register can be accessed directly or through the address aliases ILATST and ILATCL.

Table 48: ILAT Register

ILAT: 0xF0428

Bits Name Function

[9:0] ILAT Latched interrupts waiting to enter CPU

[31:10] RESERVED N/A

143 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

ILATST

An alias for the ILAT register that allows bits within the ILAT register to be set individually.

Writing a “1” to an individual bit of the ILATST register will set the corresponding ILAT bit to

“1”. Writing a “0” to an individual bit will have no effect on the ILAT register. The ILATST alias

cannot be read.

Table 49: ILATST Register Alias

ILATST: 0xF042C

Bits Name Function

[9:0] ILATST Safely sets individual bits of the ILAT register.

[31:10] RESERVED N/A

ILATCL

An alias for the ILAT register that allows bits within the ILAT register to be cleared individually.

Writing a “1” to an individual bit of the ILATCL register will clear the corresponding ILAT bit to

“0”. Writing a “0” to an individual bit will have no effect on the ILAT register. The ILATST alias

cannot be read.

Table 50: ILATCL Register Alias

ILATCL: 0xF0430

Bits Name Function

[9:0] ILATCL Safely clears individual bits of the ILAT register.

[31:10] RESERVED N/A

IMASK

This is a masking register for blocking interrupts on a per-interrupt basis. All interrupts are

latched by the ILAT register but can be blocked from reaching the program sequencer by setting

the appropriate bit in the IMASK register. At each bit position, a “1” means the interrupt is

masked.

144 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 51: IMASK Register

IMASK: 0xF0424

Bits Name Function

[9:0] ILAT Latched interrupts waiting to enter CPU

[31:10] RESERVED N/A

IRET

When an interrupt is serviced, the program counter of the upcoming sequential instruction is

saved in the IRET register. The value in the IRET register is used by the RTI instruction to return

to the original thread at a later time. For nested interrupt service routines, the IRET should be

saved on the stack.

Table 52: IRET Register

IRET: 0xF0420

Bits Name Function

[31:0] IRET The saved program counter (PC) at the time of the interrupt

[31:10] RESERVED N/A

IPEND

This is a status register that keeps track of the interrupt service routines currently being

processed. A bit is set when the interrupt enters the core and redirects the program flow and is

cleared by the software executing an RTI instruction. The lowest numbered bit set to “1”

indicates the currently serviced interrupt. Only interrupts in the ILAT register with a number less

than the lowest bit in the IPEND register reach the program sequencer. This register can be used

to implement nested interrupts. The register should never be directly written by a program.

Table 53: IPEND Register

IPEND: 0xF0434

145 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Bits Name Function

[9:0] IPEND Maintains record of all interrupts currently being serviced.

[31:10] RESERVED N/A

LC (LABS)

Table 54: LC Register

LC: 0xF0414

Bits Name Function

[31:0] LOOP_COUNT Current loop count, decremented when LE==PC.

LE (LABS)

Table 55: LE Register

LE: 0xF041C

Bits Name Function

[31:0] LOOP_END Loop end address

LS (LABS)

Table 56: LS Register

LS: 0xF0418

Bits Name Function

[31:0] LOOP_START Loop start address

146 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MEMPROTECT (LABS)

NOTE: Only bits [7:0] available in Epiphany III.

Table 57: MEMPROTECT Register

MEMPROTECT: 0xF0608

Bits Name Function

[0] PAGE0 1: Addr 0x0000 0x0FFF set as read-only memory

[1] PAGE1 1: Addr 0x1000 0x1FFF set as read-only memory

[2] PAGE2 1: Addr 0x2000 0x2FFF set as read-only memory

[3] PAGE3 1: Addr 0x3000 0x3FFF set as read-only memory

[4] PAGE4 1: Addr 0x4000 0x4FFF set as read-only memory

[5] PAGE5 1: Addr 0x5000 0x5FFF set as read-only memory

[6] PAGE6 1: Addr 0x6000 0x6FFF set as read-only memory

[7] PAGE7 1: Addr 0x7000 0x7FFF set as read-only memory

[9:8] RESERVED N/A

[10] DIS_EXT_RD 1: Disable reading core address range from external source

[11] DIS_EXT_WR_MMR 1: Disable writing to MMR register from external source

[12] DIS_EXT_WR_MEM 1: Disable writing to local memory from external source

[13] DIS_CORE_CWR 1: Disables core’s ability to write to other on-chip core

[14] DIS_CORE_XWR 1: Disables core’s ability to write off-chip

[15] EXC_EN 1: Enables interrupt from MEMPROTECT exception.

147 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MEMSTATUS (LABS)

NOTE: Only bit [2] available in Epiphany III.

Table 58: MEMSTATUS Register

MEMSTATUS: 0xF0604

Bits Name Function

[1:0] RESERVED N/A

[2] MEM_FAULT Memory protection fault from one of 8 local pages

[9:3] RESERVED N/A

[10] READ_BREACH Read from external agent attempted with

DIS_EXT_RD==1

[11] WRITE_BREACH Read from external agent attempted with

DIS_EXT_WR==1

[12] CWRITE_BREACH Write to on-chip cores attempted with

DIS_CORE_CWR=1

[13] XWRITE_BREACH Write to on-chip cores attempted with

DIS_CORE_XWR=1

148 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

MESHCONFIG (LABS)

Table 59: Mesh Configuration Register

MESHCONFIG: 0xF0700

Bit Name Function

[0] RESERVED N/A

[1] LPMODE 0=Minimal clock gating in idle mode (high power)

1=Aggressive power down in idle mode (recommended)

[2] RESERVED N/A

[3] RESERVED N/A

[7:4] MESHEVENT1 Configures mesh node input events to track on cMesh. The even

monitored can be programmed as an input to CTIMER0 or

CTIMER1.

0000 = off

0001 = reserved

0010 = any wait

0011 = core wait

0100 = south wait

0101 = north wait

0110 = west wait

0111 = east wait

1000 = southeast wait

1001 = northwest wait

1010 = south access

1011 = north access

149 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

1100 = west access

1101 = east access

1110 = core access

1111 = any access (available in Epiphany-IV only)

[11:8] MESHEVENT0 Same configuration format as MESHEVENT1

[12] WESTEDGE Blocks sync, wand, and mbkpt from propagating west

[13] EASTEDGE Blocks sync, wand, and mbkpt from propagating east

[14] NORTHEDGE Blocks sync, wand, and mbkpt from propagating north

[15] SOUTHEDGE Blocks sync, wand, and mbkpt from propagating south

MULTICAST (LABS)

Table 60: MULTICAST Register

MULTICAST: 0xF0704

Bits Name Function

[11:0] MULTICAST_ID ID to match to destination address[31:20] in the case of an

incoming multicast write transaction

[31:12] RESERVED N/A

PC

Table 61: PC Register

COREID: 0xF0408

Bits Name Function

[31:0] PROGRAM_COUNTER Contains next sequential PC to be executed

150 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

RMESHROUTE (G4-LABS)

RMESHROUTE: 0xF0718

Bit Name Function

[2:0] NORTH_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions east

110: send northbound transactions south

111: send northbound transactions west

[5:3] EAST_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions south

110: send northbound transactions west

111: send northbound transactions north

[8:6] SOUTH_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions west

110: send northbound transactions north

111: send northbound transactions east

[11:9] WEST_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions north

110: send northbound transactions east

151 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

111: send northbound transactions south

RESETCORE (LABS)

A write-only register alias used to bring the core in and out of a reset state.

Table 62: RESETCORE Register

RESETCORE: 0xF070C

Bits Name Function

[0] RESET 0: Core is taken out of reset

1: Core is put into a reset state

STATUS

The STATUS register contains information regarding the execution status of the CPU.

Table 63: STATUS Register

STATUS: 0xF0404

Bit Flag Name Updated By Function

[0] ACTIVE Interrupt, IDLE Core active indicator

0=core idle, 1=core active

[1] GID RTI, Interrupt,

GIE, GID

Global interrupts disabled indicator

0 = all interrupts enabled

1 = all interrupts disabled

[2] RESERVED N/A N/A

[3] WAND WAND instruction Multicore communication (LABS)

[4] AZ Integer Instructions Integer Zero Flag

152 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

[5] AN Integer Instructions Integer Negative Flag

[6] AC Integer Instructions Integer Carry Flag

[7] AV Integer Instructions Integer Overflow Flag

[8] BZ Floating-Point Instructions Floating-Point Zero Flag

[9] BN Floating-Point Instructions Floating-Point Negative Flag

[10] BV Floating-Point Instructions Alternate Overflow Flag

[11] RESERVED N/A N/A

[12] AVS Integer Instructions Sticky Integer Overflow

[13] BIS Floating-Point Instructions Sticky Floating-Point Invalid

[14] BVS Floating-Point Instructions Sticky Floating-Point Overflow

[15] BUS Floating-Point Instructions Sticky Floating-Point Underflow

[19:16] EXCAUSE Instructions and events Software exception cause

[31:0] RESERVED N/A N/A

The register reflects the state of the processor and should always be saved on entering an

interrupt service routine. The STATUS register can be written using the MOVTS instruction or

by directly writing to the register from an external host. The sticky flags can only be cleared

through the MOVTS instruction or an externally generated write transaction. Status bits [2:0] are

ready only bits controlled by the operational state of the CPU, but can be written forcibly

through the FSTATUS alias.

153 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

XMESHROUTE (G4-LABS)

Table 64: XMESHROUTE Register

XMESHROUTE: 0xF0714

Bit Name Function

[2:0] NORTH_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions east

110: send northbound transactions south

111: send northbound transactions west

[5:3] EAST_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions south

110: send northbound transactions west

111: send northbound transactions north

[8:6] SOUTH_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions west

110: send northbound transactions north

111: send northbound transactions east

[11:9] WEST_CONFIG 0xx: normal routing

100: block northbound transactions

101: send northbound transactions north

110: send northbound transactions east

111: send northbound transactions south

154 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Appendix C: Instruction Set Decode

This chapter specifies the Epiphany instruction set operation codes (opcodes).

Table 65: Opcode Field Summary

Field Function

I23:0 Immediate value for branch Instructions

C3:0 Condition codes for branch instructions

RN, RM, RD Register operands

SUB
Specifies that second operand is subtracted from first operand in

load/store instructions. (1=subtract, 0=add)

S Specifies store (1=store, 0=load)

B1,B0

Load/store operation size

00=Byte mode

10=Halfword mode

10=Word mode

11=Double mode

S4:S0 Immediate field used by shift instructions

M1,M0

MMR register group

00= Core Registers (0xF04XXX)

01= DMA Registers (0xF05XXX)

10=Memory Protection Registers (0xF06XXX)

11=Processor Node Configuration Register (0xF07XXX)

T4:T0 See TRAP instruction for description

155 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Table 66: Epiphany Instruction Decode Table

156 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Appendix D: Architecture Evolutionary Changes

This chapter documents the differences between the Epiphany-III and Epiphany-IV versions of

the Epiphany architecture.

Table 67: Epiphany Architecture Changes

Feature Register Epiphany-III Epiphany-IV

Software

Exception

STATUS[19:16] 0100=unimplemented

0001=swi

0010=unaligned

0101=illegal access

0011=fpu exception

1111=unimplemented

1110=swi

1101=unaligned

1100=illegal access

0111=fpu excpetion

Timer CONFIG[11:8] N/A 0011=Enables 64 bit

counter

Mesh events MESHCONFIG[7:4] 1111=N/A 1111=Counts any access

Routing

Configuration

CMESHROUTE N/A Available

Routing

Configuration

RDMESHROUTE N/A Available

Routing

Configuration

XMESHROUTE N/A Available

157 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Appendix E: Architecture Manual Changes

Table 68: Reference Change Log

Revision Changes

3.11.09.09 Initial document release

3.13.9.29 Disclosed MSGMODE for DMA

Disclosed shifted stride for DMA

Disclosed routing CTRLMODE field in CONFIG register

Disclosed hardware loop chapter

Disclosed debug functionality chapter

Disclosed WAND, MBKPT, SYNC features

Disclosed multicast feature

Disclosed Epiphany-IV routing configuration registers

Fixed lots of typos (an probably added some more..)

Moved all register descriptions to central alphabetical chapter

Hyperlinked register description table

14.02.21 Syntax fixes, formatting

Fixed SDK diagram

Changed naming version scheme

14.03.11 Clarified which features are “LABS” features

158 Copyright 2008-2013 Adapteva. All rights reserved REV 14.03.11

Appendix F: Copyright Information

Copyright © 2008-2013 Adapteva Inc.

All rights reserved.

Adapteva, the Adapteva Logo, Epiphany™, eCore™, eMesh™, eLink™,eHost™, and eLib™ are trademarks

of Adapteva Inc. All other products or services mentioned herein may be trademarks of their respective

owners.

The product described in this document is subject to continuous developments and improvements. All

particulars of the product and its use contained in this document are given by Adapteva Inc. in good faith.

For brevity purposes, Adapteva is used in place of Adapteva Inc. in below statements.

1. Subject to the provisions set out below, Adapteva hereby grants to you a perpetual, non-exclusive,

nontransferable, royalty free, worldwide license to use this Reference Manual for the purposes of

developing; (i) software applications or operating systems which are targeted to run on microprocessor

chips and/or cores distributed under license from Adapteva; (ii) tools which are designed to develop

software programs which are targeted to run on microprocessor cores distributed under license from

Adapteva; (iii) or having developed integrated circuits which incorporate a microprocessor core

manufactured under license from Adapteva.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the Reference Manual,

or any Intellectual Property therein. In no event shall the licenses granted in Clause 1, be construed as

granting you expressly or by implication, estoppal or otherwise, licenses to any Adapteva technology

other than the Reference Manual. The license grant in Clause 1 expressly excludes any rights for you to

use or take into use any Adapteva patents. No right is granted to you under the provisions of Clause 1 to;

(i) use the Reference Manual for the purposes of developing or having developed microprocessor cores or

models thereof which are compatible in whole or part with either or both the instructions or programmer's

models described in this Reference Manual; or (ii) develop or have developed models of any

microprocessor cores designed by or for Adapteva; or (iii) distribute in whole or in part this Reference

Manual to third parties, other than to your subcontractors for the purposes of having developed products

in accordance with the license grant in Clause 1 without the express written permission of Adapteva; or

(iv) translate or have translated this Reference Manual into any other languages.

3.THE “REFERENCE MANUAL” IS PROVIDED "AS IS" WITH NO WARRANTIES EXPRESS,

IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF

SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

4. No license, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1,

to use the Adapteva trade name, in connection with the use of the Reference Manual; or any products

based thereon. Nothing in Clause 1 shall be construed as authority for you to make any representations on

behalf of Adapteva in respect of the Reference Manual or any products based thereon.

Adapteva Inc.

1666 Massachusetts Ave, Suite 14

Lexington, MA 02420

USA

	1 Introduction
	2 Programming Model
	2.1 Programming Model Introduction
	2.2 Parallel Programming Example

	3 Software Development Environment
	4 Memory Architecture
	4.1 Memory Address Map
	4.2 Memory Order Model
	4.3 Endianness
	4.4 Load/Store Alignment Restrictions
	4.5 Program-Fetch Alignment Restrictions

	5 eMesh Network-On-Chip
	5.1 Network Topology
	5.2 Routing Protocol
	5.3 Read Transactions
	5.4 Direct Inter-Core Communication
	5.5 Arbitration Scheme
	5.6 Data Sizes and Alignment
	5.7 Multicast Routing
	5.8 Detour Routing Support

	6 Processor Node Subsystem
	6.1 Processor Node Overview
	6.2 Mesh-Node Crossbar Switch
	6.3 Mesh-Node Arbitration

	7 eCore CPU
	7.1 Overview
	7.2 Data Types
	7.3 Local Memory Map
	7.4 General Purpose Registers
	7.5 Status Flags
	7.6 The Epiphany Instruction Set
	7.7 Pipeline Description
	7.8 Interrupt Controller
	7.8.1 Overview
	7.8.2 Global Interrupt Disable Flag (GID)
	7.8.3 User Interrupts
	7.8.4 Interrupt Latency

	7.9 Hardware Loops (LABS)
	7.10 Debug Unit

	8 Direct Memory Access (DMA)
	8.1 Overview
	8.2 DMA Descriptors
	8.3 DMA Channel Arbitration
	8.4 DMA Usage Restrictions
	8.5 DMA Transfer Examples

	9 Event Timers
	10 Memory Protection Unit (LABS)
	Appendix A: Instruction Set Reference
	ADD
	AND
	ASR
	B<COND>
	BL
	BKPT
	EOR
	FABS
	FADD
	FIX
	FLOAT
	FMADD
	FMUL
	FMSUB
	FSUB
	GID
	GIE
	IADD
	IMADD
	IMSUB
	IMUL
	ISUB
	IDLE
	JALR
	JR
	LDR (DISPLACEMENT)
	LDR (INDEX)
	LDR (POSTMODIFY)
	LDR (DISPLACEMENT-POSTMODIFY)
	LSL
	LSR
	MBKPT (LABS)
	MOV<COND>
	MOV (IMMEDIATE)
	MOVT (IMMEDIATE)
	MOVFS
	MOVTS
	NOP
	ORR
	RTI
	RTS (alias instruction)
	SUB
	STR (DISPLACEMENT)
	STR (INDEX)
	STR (POSTMODIFY)
	STR (DISPLACEMENT-POSTMODIFY)
	SYNC (LABS)
	TRAP
	TESTSET
	WAND (LABS)

	Appendix B: Register Set Reference
	Register Summary
	CMESHROUTE (G4-LABS)
	COREID
	CONFIG
	CTIMER0
	CTIMER1
	DMAxAUTO0 (LABS)
	DMAxAUTO1 (LABS)
	DMAxCONFIG
	DMAxCOUNT
	DMAxDSTADDR
	DMAxSRCADDR
	DMAxSTATUS
	DMAxSTRIDE
	DEBUGCMD
	DEBUGSTATUS
	FSTATUS (LABS)
	ILAT
	ILATST
	ILATCL
	IMASK
	IRET
	IPEND
	LC (LABS)
	LE (LABS)
	LS (LABS)
	MEMPROTECT (LABS)
	MEMSTATUS (LABS)
	MESHCONFIG (LABS)
	MULTICAST (LABS)
	PC
	RMESHROUTE (G4-LABS)
	RESETCORE (LABS)
	STATUS
	XMESHROUTE (G4-LABS)

	Appendix C: Instruction Set Decode
	Appendix D: Architecture Evolutionary Changes
	Appendix E: Architecture Manual Changes
	Appendix F: Copyright Information

