A Manycore Coprocessor Architecture for Heterogeneous Computing

Andreas Olofsson
andreas@adapteva.com
Houston, we have a problem..

Supercomputer Growth = 6.x in 3 years

Projected improvement rates, although smaller than historical values, are still substantial

James Anderson, HPEC 2008
Current Path To Exaflop Supercomputing

- **2023 Projection:**
 - 10 EXAFLOP
 - 100 GFLOP/Watt
 - 10 GWatt System

- **2023 Alternative:**
 - Change programming model
 - 10 EXAFLOP
 - 1-10 TFLOP/Watt
 - 0.1 – 1 GWatt
Ease of use → Area → Power

The quest for the holy grail: An architecture that is flexible, easy to use, and power efficient.
Stratix IV FPGA Example (40nm)

- 820K Logic Elements
- 48 high speed transceivers at 8.5 GB/s
- 23 MB SRAM
- 1288 hard macro multipliers (18bit)
- Up to 264 LVDS pairs

But, even FPGAs have warts (blue and purple squares do useful work!)

Source: Rose, et al FPGA 2003
Intel *Teraflops* Effort (65nm)

- **Core Details:**
 - VLIW Machine
 - Dual FMADD
 - 2 Kbytes DMEM
 - 4 Kbytes IMEM

- **Interconnect Details:**
 - 2D Mesh NOC
 - 20 Gbyte/link BW

- **Performance:**
 - 5-25 GFLOPS/WATT

Figure 5.2.7: Full-Chip and tile micrograph and characteristics.
Usage Programming Model

FPGA:
- Interfacing
- Data Flow
- Bit Level processing

Coprocessor:
- Great at math!
- Limited flexibility
- Simple programming
- High Efficiency

Microprocessor:
- Program Control
- Human interfaces,
- Knowledge extraction

Peaceful coexistence between architectures...
Proposed Coprocessor Solution

- Mesh connected array of ANSI C-programmable processor cores
- 16 to 1024 independent dual issue microprocessors

- Distributed Shared Memory Architecture
- Distributed DMAs
- IEEE 754 floating point support

50 GFLOP/Watt Performance @ 65nm
The Processor

- Included:
 - ANSI-C programmability
 - Features that increased FLOPS/Watt
 - Floating point support

- Excluded:
 - Cache!!!
 - Compiler driven optimization
 - Instruction set optimization across a broad range of applications
 - SIMD
The Network

- Highlights:
 - On-chip wires are free!
 - Address used as 2D routing address
 - Bidirectional mesh network operating at same frequency as core
 - Optimized for deterministic data traffic and low latency communication
 - 64GB/sec BW at each node
Interfaces

- SOCs tend to have too many interfaces but never the right ones
- FPGAs can have the right interface and have hundreds of GPIO signals
- Use custom low power coprocessor-FPGA interface
Multicore FFT Example

- **Approach:**
 - 1024 point FFT is spread over 16 processors
 - s1, s2, s3, s4 refer to the four FFT stages for combining data with 64 point complex data movements
 - Lower # procs transfer W0 to higher # procs.
 - Lower # proc calculates Wj0 + Wj1 x Cj, higher # proc calculates Wj0 - Wj1 x Cj

- **Results:**
 - NOC enables efficient multicore programming
 - < 3us execution time!
 - High efficiency
 - Work in progress, still room for improvement
Summary

- Heterogeneous computing is the only way to continue scaling performance

- ... but it will require some changes to the programming model

- 50 GFLOPS/Watt possible today in 65nm