Parallella: A Love Story

Heterogeneous..

Parallel..

Efficient...

Open..

Andreas Olofsson MIT, Jan 7,2013

Adapteva Achieves 3 "World Firsts"

1. First processor company to reach 50 GFLOPS/W

2. First open source OpenCL™ SDK in the mobile market

3. First semiconductor company to successfully crowd-source project

KICKSTARTER

Prologue

Why we need heterogeneous and parallel platforms

ASIC, FPGA, DSP, CPU?

	ASIC	FPGA	DSP	CPU
Flexibility	Poor	Great	Good	Good
Efficiency	Great	Good	Good	Fair
Development Cost/Risk	High	Medium	Medium	Low
Leverage	Minimal	Modest	High	Huge

A Practical Radar System Example

FPGAs are great for front-end DSP and connectivity.

Microprocessors are great for user interfacing, knowledge extraction, and system management.

The missing piece: a math engine that is high performance, low-power and C-programmable.

Why SOC integration is so disruptive

iPhone4s ~58mm

A5X Chip
~16mm

EESSOSEPE 86PS71dV

What if your smartphone disappears?

A5X-die ~13mm

ARM

FPU

62 cm³

>1M X Volume Reduction

0.00003 cm³

The Problem: SOCs are complex!

Our Vision: True Heterogeneous Computing

Epiphany: Massive Task-Parallelism

Coprocessor to ARM/Intel CPU

25mW per core

C/C++ programmable

Programming Models

MODEL#1 TASK QUEUE MODEL

- Up to 2 GFLOPS/core
- Supports standard C/C++
- "Cloud on a chip"

MODEL #2 DATA PARALLEL MODEL

- openCL programmable
- Easy integration of C/C++
- openMP/MPI roadmap

Epiphany Silicon Devices

Features:

- 16 RISC CPU cores
- 512KB distributed memory
- IEEE Floating Point
- 32 distributed DMA engines
- 4 off-chip serial links
- 65nm

Specifications:

- 1 GHz
- 32 GFLOPS
- 2 Watt Max Chip Power
- 512 GB/sec memory bandwidth
- 8GB/sec off chip BW

Features:

- 64 RISC CPU cores
- 2MB distributed memory
- IEEE Floating Point
- 128 distributed DMA engines
- 4 off-chip serial links
- 28nm

Specifications:

- 800 MHz
- 100 GFLOPS
- 2 Watt Max Chip Power
- 1.6 TB/sec memory bandwidth
- 8GB/sec off chip BW

Parallella

Parallella Open Computing

- Open (and "free"):
 - Documentation
 - Board design files
 - Drivers
 - Software Tools
- Accessible (NO NDAs!)
- \$100 entry point
- ~4000 devs signed up in 4 weeks

How cool is this?

(1992) Connection Machine 5 (2012/2013) Parallella Board

100 GFLOPS 100 KW \$10M 100 GFLOPS 5 W (20k X) \$200 (50k X)

Parallella Architecture

Parallella Coprocessor Approach

ARM runs Linux

Epiphany accelerates key tasks

Programmable logic "makes anything possible"

Program Flow

- 1. ARM boots Linux. First stage boot loader from Flash, everything else from SD card.
- 2. "Main" application executes on ARM
- 3. Application sends critical tasks send to Epiphany using OpenCL or simple threads
- 4. ARM/Epiphany communication through shared DRAM buffer outside virtual memory of O/S.

Zedboard Introduction

The Future is...
Open
Heterogeneous
Massively Task-Parallel
Efficient

Grande Challenges Ahead...

- Rebuild the computer ecosystem
- Rewrite billions of lines of code
- Retrain millions of programmers
- Rewrite the education curriculum

