

Inventing the Future of Computing

An Alternative to GPU Acceleration For Mobile Platforms

Andreas Olofsson andreas@adapteva.com

50th DAC
June 5th, Austin, TX

Adapteva Achieves 3 "World Firsts"

1. First commercial chip to reach 50 GFLOPS/W

2. First mobile processor with an open source OpenCLTM SDK

3. First semiconductor company to successfully crowd-source project

What is Adapteva

Company History:

- Fabless semiconductor company founded in 2008
- 16-core 65nm Epiphany-III chip product sampling since May 2011
- 64-core 28nm Epiphany-IV chip product sampling since July 2012
- Parallella open computing platform launched in October 2012.

Notable Achievements:

- #1 in microprocessor energy efficiency
- 4 chips on \$2.5M in raised capital
- \$2M in total revenue to date
- 5K customers, 6,300 boards pre-sold
- 18 Patents pending

Our guiding light

Parallel

PARIETAL LOBE FRONTAL LOBE

TEMPORAL

LOBE

OBE

Efficient

Heterogeneous

Robust

Any Reason to Think the Future of Computing is NOT Parallel?

No Computing

Parallel Computing

No Electronic Computing -1943

"Von Neumann Age" Serial Computing 1943-2013? Parallel Computing 2013-??

A Practical Start:

True Heterogeneous Computing

The Accelerator Challenge

Limited

Accelerator

Limited

Accelerator

Status Quo Approach

(~1.3X speedup)

Smart Coprocessor (>10X speedup?)

Application

Move Data

Context Switch

Something Else

Context Switch

Move Data

Application

Move Data

Context Switch

Something Else

Context Switch

Move Data

Application

Move Data

Context Switch

Application

Something Else

Context Switch

Move Data

Application

"Smart"

Coprocessor

The Epiphany Coprocessor

Epiphany-IV -- GLOBALFOUNDRIES 28SLP IP

- 64 CPUs
- IEEE Floating Point (SP)
- 800 MHz Max Frequency
- 100 GFLOPS Performance
- 6.4 GB/s IO BW
- 200 GB/s peak NOC BW
- 1.6 TB/sec on chip memory BW
- 25 Billion Messages/sec
- 2MB on chip memory
- 10 mm² total silicon area in 28nm
- 2 Watt total chip power
- 324 ball 15x15mm BGA
- Sampling since July, 2012

Epiphany ANSI-C Benchmarks

(Cycles)	Naïve C	Optimal C	Theoretical	C-Efficiency
8x8 Matrix Multiplication	2852	773	512	66%
16 Tap FIR Filter (32 points)	1562	620	512	82%
Bi-quad IRR Filter (32 points)	n/a	991	768	77%
Dot-product (256 point)	800	557	256	49%

1 day per benchmark

(compare to GPUs?)

	Adapteva E64 800 MHz	Tilera GX36 1.4GHz	Intel Xeon L5640 2.2GHz	Nvidia Tegra-2 1GHz
CoreMark TM Score	77,912	165,276	118,571	5,866
# Cores	64	36	8	2
Power	2W	~30-50W	~50-100W	~1-2W
1024-Core Chip	2,493,184	n/a	n/a	n/a

Server Level Performance at 2Watts!!

Architecture Comparison

Technology	FPGA	DSP	GPU	CPU	Epiphany
Process	28nm	40nm	28nm	32nm	28nm
Programming	VHDL	OCL/C++/C	CUDA/OCL	OCL/C/C++	OCL/C/C++
Area (mm^2)	590	108	294	216	10
Chip Power (W)	40	22	135	130	2
"CPUs"	n/a	8	32	4	64
Max GFLOPS	1500	160	3000	115	102
GHz * Cores	n/a	12	32	14.4	51.2
Compile Time	Hours	Minutes	Minutes	Minutes	Minutes
L1 Memory	6MB	512KB	2.5MB	256KB	2MB

Efficiency is everything

Peak performance means very little

No magic bullet!

Epiphany: A Truly Scalable Architecture

Epiphany Cores

How the \$#@% Do We Program This Thing?

Epiphany Programming Models

MODEL #1 DATA PARALLEL MODEL

- openCL programmable
- Easy integration with C/C++
- openMP/MPI roadmap

MODEL#2 WORKER BEE MODEL

- Great for up to 2GFLOPS
- Supports standard C/C++
- "Cloud on a chip"

Parallel Programming Frameworks

Erlang	SystemC	Intel TBB	Co-Fortran	Lisp	Janus
Scala	Haskell	Pragmas	Fortress	Hadoop	Linda
Smalltalk	CUDA	Clojure	UPC	PVM	Alef
Julia	OpenCL	Go	X10	Posix	XC
Occam	OpenHMPP	ParaSail	APL	Simulink	Charm++
Occam-pi	0 145	l			
o ocam pr	OpenMP	Ada	Labview	Ptolemy	StreamIt
Verilog	OpenACC	Ada C++ Amp	Labview Rust	Ptolemy Sisal	StreamIt Star-P

Stupid Hurdles That Hinder Collaboration

Proprietary SDKs and programming frameworks

Lack of datasheets/documents

- Closed source drivers
- Expensive lock-in hardware
- NDA requirements
- Exlcusive access

Open HW is now following the same successful path as open SW!

Parallella: Our "Secret Weapon"

- A \$99 single board "parallel" computer that runs Linux
- Open source (SDK, board files, drivers) (github.com/parallella)
- Open documentation (adapteva.com/all-documents)
- Open to all (forums.parallella.org)

The Parallella Board

Parallella Kickstarter Campaign

- 5,000 customers
- 6,300 boards "pre-sold" in 4 weeks
- 67 countries, all 50 US states
- 50-75% of backers are developers
- 12,000 more signups since Jan 1st
- Backer Application Interest:
 - Software Defined Radio
 - Ray tracing/rendering
 - Image processing
 - Robotics
 - Gaming

- Cryptography
- Parallel computing research
- Distributed Computing
- Machine Learning
- HPC

Epiphany IP Conclusions

- #1 in processor energy efficiency at 70 GFLOPS/Watt (core)
- Silicon proven in GLOBALFOUNDRIES 28SLP node
- Only multicore IP that is scalable to 1000's of cores on chip
- Easier to use than GPGPUs

